
Supporting Materials for “A model for the stabilities of

protein crystals”

1 Non-electrostatic terms

We have supposed that protein crystals are stabilized mainly by nonelectrostatic protein-protein

contact interactions. Each type of protein in its particular crystal lattice will be modeled by partic-

ular values of ∆h0 and ∆s0. For our comparison to experiments in the main text, we have simply

taken those two quantities as fit parameters. Here we make a few simple estimates to see if those

values can be rationalized in terms of hydrophobic and hydrogen bonding interactions.

1.1 Hydrophobic interactions

The hydrophobic effect has been studied extensively in proteins for its role in stabilizing the folded

state.1–6 We adopt the usual formulation and express the enthalpy and entropy of hydrophobic

burial in terms of the change in heat capacity between the buried and exposed states

∆h(T ) = ∆cp(T − TH) (S1)

∆s(T ) = ∆cp ln
T

TS
, (S2)

where ∆h and ∆s are the enthalpy and entropy of hydrophobic burial per square Angstrom of

solvent-accessible surface area (ASA), ∆cp is the heat capacity change per unit ASA, and TH and

TS are the so-called convergence temperatures where the enthalpy and entropy changes vanish.

The specific free energy change is then

∆g = ∆cp(T − TH)− T∆cp ln
T

TS
. (S3)
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There are three parameters in Eq. S3: the convergence temperatures, TH and TS , and the specific

heat capacity change, ∆cp. We determine TH and ∆cp by fitting Eq. S1 to published values for

the enthalpy change.6 We obtain ∆cP = −2.0JK−1mol−1Å−2 in reasonable agreement with the

work of Privalov and Makhatadze, who found –2.3 JK−1mol−1Å−2 at 5◦C.7 For the enthalpy con-

vergence temperature we obtain TH = 359K. The entropy convergence temperature is obtained

by fitting Eq. S2 to experimental values for the specific entropy change,6 using the previously

determined heat capacity. We obtain TS = 399K.

The hydrophobic burial term is then

∆GHφ = ∆ASAcarbon

[
∆cp(T − TH)− T∆cp ln

T

TS

]
. (S4)

To find the change in ASA we use a 1.4 Å radius probe to measure the surface area of the crystal

forms 193L (tetragonal)8 and 1AKI (orthorhombic)9 alone and in the presence of all crystallo-

graphic copies that approach the reference molecule within 4 Å. For the tetragonal crystals we

find a total ∆ASA of 1902 Å2 of which 843 Å2 is from carbon atoms. For the orthorhombic form

the numbers are ∆ASA = 2344Å2 of which ∆ASAcarbon = 1042Å2. We do not distinguish between

aliphatic and aromatic carbons because we found that the analysis is not very sensitive to this.

Fig. S1 shows the computed free energy, enthalpy, entropy of hydrophobic burial for tetragonal

crystals. By this estimate, on balance, hydrophobic burial helps stabilize these tetragonal crystals

of lysozyme.
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Figure S1: Enthalpy, entropy, and free energy of hydrophobic burial in tetragonal lysozyme crys-
tals.

S2



1.2 Hydrogen Bonds

There is considerable debate as to the role of H-bonds in the stabilization of proteins and protein-

protein complexes,10 undoubtedly at least partly because the strength of an H-bond is context

dependent.11, 12 We make a simple estimate here.

For the temperature dependence of H-bonding, we use a functional form similar to that for the

hydrophobic interactions,

∆GHB = ∆CHB
p (T − THB

H )− T∆CHB
p ln

T

THB
S

, (S5)

where ∆GHB and ∆CHB
p are the free energy and heat capacity change per H-bond.11 For two

reasons, we must make choices here: (1) the experimental data11 gives a wide range of values

(66 < ∆CHB
p < 90J K−1mol−1, 380 < THB

H < 410K, and 360 < THB
S < 466K), and (2) the authors

have studied cyclodextrin, which may differ from peptide bonds. Our best guess is to adopt the

convergence temperatures of their “A” data set, THB
H = 380K and THB

S = 360K (although similar

result may be obtained with the other sets) and scale the overall magnitude of the H-bond term

so that the enthalpy contribution from the hydrophobic and H-bond terms sum to ∆h0. This is

equivalent to using ∆CHB
p as a fitting parameter.

The total H-bond free energy is nH∆GHB where nH is the number of H-bonds observed in the

crystal structure. The crystal structure 193L8 shows 15 H-bonds between the reference molecule

and its six nearest neighbors, so we set nH = 15. Of these, only one is between two charged

groups, although we will not discriminate between charge-charge, charge-polar, or polar-polar

contacts in our present analysis. The orthorhombic crystal form, 1AKI,9 has nH = 14 H-bonds.

In Fig. S2 we plot the enthalpy, entropy, and free energy of the H-bonds in tetragonal crystals.

Note that the enthalpy and entropy have opposite slopes compared to the hydrophobic interac-

tions (Fig. S1). This follows from the fact that H-bonds and hydrophobic interactions have heat

capacity changes with differing signs.13 This leads to the fortuitous cancellation of the tempera-

ture dependence that allows the temperature independent approximation of Eqs. 5 and 6.
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Figure S2: Enthalpy, entropy, and free energy of the H-bonding term in tetragonal lysozyme crys-
tals.

1.3 Internal Entropy

One other contributor to the nonelectrostatic contact interactions is the internal entropy, account-

ing for the restriction of side chains at the crystal contacts,14 release of bound waters,15 and the

loss of rotational entropy.16 The latter contribution is independent of the crystal form, while the

former two will be roughly proportional to the area buried at the crystal contacts. Since the dif-

ference in ∆ASA between the two crystal forms is only ∼ 20% and water release and side chain

restriction are expected to affect the entropy in opposide directions, we expect that ∆Sint will be

similar for the two crystal forms.

1.4 Enthalpy and entropy budget

We combine these non-electrostatic contributions to get

Htot = HHφ + HHB

Stot = SHφ + SHB + Sint. (S6)

For the heat capacities we obtain ∆CHB
p = 122 and 110 J/K/mol, which corresponds to average

H-bond energies of –3.1 and –2.8 kJ/mol for tetragonal and orthorhombic crystals, respectively.

The internal entropies are –235 and –248 J/K/mol, respectively.
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Tetragonal Orthorhombic
Enthalpy Entropy H − TS Enthalpy Entropy H − TS

Hydrophobic 123.9 564.3 -37.2 111.5 556.4 -58.5
H-bond -173.3∗ -425.3 -51.9 -115.1∗ -253.7 -37.6
Sint

∗∗ ∅ -234.7 67.0 ∅ -248.4 75.9
Total -49.4 -95.7 -22.1 -3.6 54.3 -20.2

Table 1: Decomposition of ∆h0 and ∆s0 into the contributions discussed in the text. Enthalpy and
free energy values are given in kJ/mol, entropy values are kJ/K/mol. Values are computed at
T = 12.5◦C for tetragonal crystals and T = 32.5◦C for orthorhombic.
∗ Fit by adjusting ∆Cp
∗∗ Fitting parameter

In Table 1 we show each of the terms in Eqs. S6 after optimizing ∆CHB
p and Sint so that Htot = ∆h0

and Stot = ∆s0. They show our estimate that the crystals are stabilized by both hydrophobic

and hydrogen bonding interactions, roughly at equal magnitudes, and with overall very little net

temperature dependence of the contact free energy. Table 1 shows these various contributions for

lysozyme in both crystal forms.

We note that the approach presented in this appendix is functionally equivalent to that we pre-

sented in the main text. Here the free parameters are the H-bond strength and the internal entropy.

In fact, fitting the solubility using these parameters instead of ∆h0 and ∆s0 reproduces the data

with a fidelity comparable to that shown in Figs. 2 and 3. This insensitivity to the details of

the model is a consequence of the temperature independence of the non-electrostatic enthalpy

and entropy. This temperature independence, and also the wide range of ∆h0 and ∆s0 values

we observe, follow directly from the thermodynamic properties of hydrophobic interactions and

H-bonds.

2 Linearized approximation

Here we develop an analytic expression for the electrostatic enthalpy change. To do this we em-

ploy a linearized (Debye-Huckel) approximation to Eq. 7. While this approximation is quantita-

tively poor due to the large potentials in the crystal, the qualitative trends are illuminating and it

may be useful for weakly charged proteins.
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Upon the linearization of Eq. 7 we have

∇2ψ(~x) = κ2ψ(~x), (S7)

where κ−1 = (εwε0kBT/2e2NAcbulk)1/2 is the Debye screening length. The radial solution to Eq.

S7 for the geometry shown in Fig. 1 is

ψ(r) = A
e−κr

r
+ B

eκr

r
, (S8)

where the constants A and B are determined by the boundary conditions. Applying the boundary

conditions discussed in the text

−ψ′(r = a) =
Ze

4πεwε0a2
(S9)

−ψ′(r = b) = 0, (S10)

we arrive at an expression for the potential

ψcrys(r) =
Ze

4πεwε0

eκ(b−r)(κb− 1) + e−κ(b−r)(κb + 1)
r[eκ(b−a)(κb− 1)(κa + 1)− e−κ(b−a)(κb + 1)(κa− 1)]

. (S11)

In the limit b →∞ we recover the Debye-Huckel result for an ion in solution

ψsol(r) =
Ze

4πεwε0

e−κ(r−a)

r(κa + 1)
, (S12)

which, at the protein surface, can be written as

ψsol(a) =
Ze

4πεwε0

(
1
a
− κ

κa + 1

)
. (S13)

In Eq. S13 the first term is instantly recognized as the potential due to the protein macroion,

ψp(r) = Ze/4πε0εwr, and therefore the second term is the potential due to the associated salt ions.

The interaction energy between the soluble protein and the salt ions is then

Esol = − Z2e2κ

4πεwε0(κa + 1)
. (S14)

In the crystal state the situation is somewhat more complex. Here the electrostatic potential can
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be decomposed as in Eq. 13

ψcrys(r) = ψp(r) + ψcrys
s (r) + ψcrys

0 , (S15)

where the three terms on the right represent the potential due to the protein, salt, and crystal

surface charges, respectively. The electrostatic potential energy of the protein interacting with its

ion cloud is Zeψs(a), or

Ecrys = Ze(ψcrys(a)− ψcrys(b)− ψp(a)). (S16)

The change in the interaction energy between the crystal and solution states is

∆hES = Ecrys − Esoln (S17)

= Ze(ψcrys(a)− ψcrys(b)− ψsol(a)) (S18)

=
Z2e2

4πεwε0

2κ[e−κ(b−a)(κb + 1)− (κa + 1)]
(κa + 1)[eκ(b−a)(κb− 1)(κa + 1)− e−κ(b−a)(κb + 1)(κa− 1)]

. (S19)

3 Fitting procedure

To determine the free parameters ∆h0 and ∆s0 we define the sum of square errors

SSE =
∑

i

(ln(ci/Mw)− µ(pHi, [NaCl]i, Ti, ∆h0, ∆s0))2 (S20)

where ci is the protein solubility in mg/ml, Mw =14,400 is the molecular weight, µ is given by Eq.

27, and the sum is over the 598 data points shown in Fig. 2. A similar procedure was followed

for orthorhombic crystals, but since the experimental data was presented in the form of quadratic

fits, the sum over i was done at 3K increments at each pH and salt concentration. The SSE is

plotted in Fig. S3 as a function of ∆h0 and ∆s0. It is readily evident that the SSE has a prominent

valley. The valley floor is inclined at an angle ∆∆h0/∆∆s0 = 285K corresponding to the mid

point of the temperature range studied. For convenience we rescale the ∆s0 axis by this value so

that both axes have the same units. The second derivatives at the minimum SSE = 25.0 are then

5.48 × 10−8(kJ/Mole)−2 along the valley floor and 4.25 × 10−4(kJ/Mole)−2 in the perpendicular

direction.
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Figure S3: Plot of the sum of square errors vs. the fitting parameters ∆h0 and ∆s0. The minimum
is indicated by the red square.
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