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We analyze the interaction of two conducting, charged polymer chains in solution using a minimal model for
their electronic degrees of freedom. We show that a crossing of the two chains in which the polymers pass
within angstroms of each other leads to a decrease of the electronic energy of the combined system that is
significantly larger than the thermal energy and thus promotes interchain aggregation. We consider the com-
petition of this attractive interaction with the screened electrostatic repulsion and thereby propose a phase
diagram for such polymers in solution; depending on the charge density and persistence length of the chains,
the polymers may be unbound, bound in loose, braidlike structures, or tightly bound in a parallel configuration.
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I. INTRODUCTION

Conjugated polymers have been the subject of intense re-
search in the physics, chemistry, and materials science com-
munities. These molecules provide both a laboratory to ex-
plore one-dimensional conductorsf1–3g and the potential for
a plethora of applications in such disparate devices as solar
cells f4g and chemo- or biosensorsf5–8g. The simplest con-
ducting polymer system is polyacetylene. The underlying
cause of its conductivity, however, is somewhat subtle owing
to the fact that, due to the Peierls instabilityf9,10g in one
dimension, this molecule appears to be a semiconductor
sbased on an analysis of uncorrelated electronsd. Here we
consider the case of an electron-doped polymer in which the
Fermi energy lies within the conduction band.

The utility of conjugated polymers is generally realized in
the complex chemical systems created by adding functional
groups to the conjugated backbone. Such modified polymers
typically include side groups to modify the conductivity of
the backbone by doping in either electrons or holes; polar or
ionizable side groups can also dramatically increase the solu-
bility of these molecules in waterf11g. Fluorescent, water-
solubilized conjugated polymers such as polyparaphenylene
vinylene sPPVd hold promise for use as biosensors since
their fluorescence is readily quenched by electron acceptors
such as methyl viologensMV d. Biomolecules tagged with
MV can be detected optically at remarkably low concentra-
tion using these water-soluble conjugated polymers. Fluores-
cence quenching can be quantified by the Stern-Volmer con-
stantKSV, which describes the loss of quantum efficiency per
mole of quencher present. SinceKSV.107 M−1 for the
PPV-MV system, MV tagged biomolecules can be detected
via fluorescence quenching at 100 nM concentrationsf12g.
Before this analytic tool can be realized, a number of com-
plications must be addressed. These include understanding

and accounting for the dramatic effect of “bystander” mol-
ecules such as surfactants on the value ofKSV f13g, as well as
addressing the role played by chain length of the PPV
f14,15g. Additionally, the PPV-MV system is hindered as an
analytical tool by the tendency of the PPV to aggregate in
solution and to bind nonspecifically with other small mol-
ecules. Neutron and light scatteringf16g demonstrate that
PPV solutions form large aggregates under low-salt condi-
tions. With added salt, the scattering data can be fitted by
rodlike structures having a persistence length of 80 nmf17g
suggesting the bundling of the chains in solution.

Understanding the tendency of metallic polymers to ag-
gregate in solution is the central focus of this paper. We
propose an interchain adhesion mechanism specific to conju-
gated polymers that should apply to doped, solubilized PPV
and other conducting polymers. When two polymer chains
approach each other to angstrom-scale distances at some
point along their backbones, the interchain tunneling of the
electronssholesd in the conduction bands of the two mol-
ecules decreases the total electronic energy of the system.
This decrease in the energy of the electronic degrees of free-
dom is primarily due to the creation of a low-energy, local-
ized state at the crossing point of the two chains. These states
lead to the aggregation of the two chains since, for physically
reasonable parameters, the energy decrease per crossing
point is on the order of a fewkBT. Such an electron tunneling
mechanism has been previously discussed as a source of an
intrachain, attractive interaction leading to polymer collapse
in a good solventf18g. Here we consider polymers having a
long enough thermal persistence length and at high enough
concentrations in solution that such self-interaction leading
to collapse as discussed by Hone and Orlandf18g is domi-
nated by interchain adhesion.

The mechanism that we propose is analogous to the cre-
ation of a molecular covalent bond with the distinction that
in the present system, the bonding and antibonding states
that are localized at the crossing point of the two chains are
not created from normal atomic energy eigenstates, but
rather are pulled out of the delocalized states of the charge
carriers on the chains. In the remainder of the article, we first
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explore the consequences of this type of interchain bonding
sin Sec. IId in three stages of increasing complexity. We con-
sider the effect of a single chain-crossing point that leads to
interchain tunneling in Sec. II A. We then turn to the case of
multiple crossing points by considering an ordered array of
such points in Sec. II B, before turning to the more physical
case of a thermally disordered set of crossing points in Sec.
II C. Finally, we consider the attraction between two poly-
mers aligned in a parallel configuration in Sec. II D.

In order to determine the adhesive properties of these con-
jugated polymers, we need to compare the decrease in the
energy of the electronic degrees of freedom of the molecule
to the increase of chain conformational free energy associ-
ated with adhesion. We turn to the latter calculation in Sec.
III, before combining these two parts of the analysis in Sec.
IV wherein we discuss the results and propose experimental
tests of this work.

II. INTERCHAIN ADHESION

Since we suggest that the adhesive properties of the con-
ducting polymers are a generic consequence of populating
the conduction band of the these extended molecules, we
develop our theory based on a minimalistic, tight-binding
Hamiltonian for these conduction electrons on a chain ofN
sites of the form

H0 = − t o
,=−N/2

N/2

su,lk, + 1u + u, + 1lk,ud, s1d

where u,l is a state vector for an electron on the,th tight-
binding site. In the absence of strong electron-electron cor-
relationsf6g such a single particle approach is justified and
many properties of such conjugated polymers have been pre-
dicted via such simple tight-binding modelsf19g. The over-
lap integralt is not precisely known for a number of these
systems, but recent spectroscopic results on chemically re-
lated systemsf19g suggest thatt is on the order of 1–4 eV.

To discuss the modification of the electronic states of this
tight-binding model due to the proximity of another such
polymer at one point or a set of pointsh,Ij, we modify Eq.
s1d by introducing another copy and including an interaction
term between the chains parametrized by a second hopping
matrix elementt8:

H0 = − t o
j=1,2

o
,=1

N

su, + 1,jlk,, j u + u,, jlk, + 1,j ud, s2d

HI = − t8 o
,̄Ph,Ij

su,̄,1lk,̄,2u + u,̄,2lk,̄,1ud. s3d

In the above equations, the sum onj is over the two chains,
while the interaction HamiltonianHI allows for interchain
hopping at a selected subset of sites along the polymer,h,Ij.
We restrict the set of possible interchain tunneling junctions
to only those that allow tunneling betweenequivalentsites
on the two chains. In other words we do not admit tunneling

matrix elements of the formu,̄ ,1lk,̄8 ,2u where ,̄Þ ,̄8. The

advantage of this restriction is that the full Hamiltonian is
diagonal in the basis of chain symmetrized/antisymmetrized
wave functions. We can consider these two subspaces inde-
pendently in the following. The interchain hopping matrix
elementt8 has been shown numerically to be on the order of
0.1 eV for similar chemical systemsf20g. It is essential to
note that since the interchain tunneling matrix element is
exponenetially sensitive to the interchain separation, it is ac-
ceptable to suppose that this matrix element will be finite at
only isolated points. In fact, we will later show in Sec. III
that the positions of these “crossing points” are spatially cor-
related along the arclength of the chain due to chain confor-
mational free energy. Finally, in writing the full Hamilto-
nians Eqs.s1d–s3d we have suppressed the spin degrees of
freedom of the electrons. It is reasonable to assume that the
proposed interchain tunneling mechanism is independent of
electron spin. Thus, we may later trivially account for these
spin degrees of freedom by a multiplicative factor of 2 in the
density of states of the electronic degrees of freedom. A
simple pictorial representation of the basic problem for the
case of only one hopping site is shown in Fig. 1.

Because of the large separation of time scales between the
electronic and conformational degrees of freedom of the
polymer chain, we may ignore conformational changes in the
polymer while discussing the modification of the electronic
states due to the proximity of the two chains at a given point
or set of points. To show that we may ignore the thermal
motion of the point of closest approach in discussing the
electronic structure of the molecules, we compare the time
scale for monomer motion over distances of a Bohr radius
sthe distance over which one expectst8 to vary rapidlyd
Tchain,aBÎm/ skBTd to characteristic times for electronic
structure reorganization Telectron," / t. We find that
Telectron/Tchain,10−10 so the adiabatic approximation is emi-
nently reasonable.

Similarly, we note that the temperature of the system
stypically 300 K or lessd is significantly less than the Fermi
temperature of the electronic system so in the remainder of
the calculation we will determine the total free energy of the
electronic degrees of the freedom in a zero temperature ap-
proximation whereas we will consider the role of tempera-
ture and consequently entropy while discussing the confor-
mational and translational degrees of freedom of the
polymer. We now develop our calculation for the binding
energy of the two chains by computing separately the de-
crease in the energy of the electronic degrees of freedom due

FIG. 1. A pictorial representation of the simplest crossed-chain
configuration in which the interchain hopping is allowed at the cen-
tral site ,=0. The spheres represent the tight-binding sites for the
conduction electrons along the chains. The chains need not be
straight as shown here.
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to interchain tunneling and increase in chain free energy due
to the loss of some translational and conformational entropy.
From the sum of these two effects, we determine the effec-
tive binding energy. First we consider a single crossing point
as shown in Fig. 1.

A. Single crossing point

We take the single crossing point to lie in the middle of
both chainsh,Ij=h0j as shown in Fig. 1. We return to cross-
ing configurations of lower symmetry later. We note that the
interaction Hamiltonian Eq.s3d can be diagonalized in the
basis of symmetrized and antisymmetrized chain occupation
states:

u,, ± l =
1
Î2

fu,,1l ± u,,2lg, s4d

so that in this basis Eq.s3d takes the form

HI = − t8 o
,̄Ph,Ij

fu,̄, + lk,̄, + u − u,̄,− lk,̄,− ug. s5d

It is immediately clear that the action of the Hamiltonian on
the subspaces of the antisymmetrized and symmetrized states
is identical except for the exchange oft8→−t8. We discuss
the energies of states in both subspaces in parallel. The
Hamiltonian is also symmetric under the parity operator
Pu, , ±l= u−, , ±l; since only the states symmetric underP
will be affected by the crossing point, we focus on these even
parity states in the following. We make an ansatz for the
unnormalized,santidsymmetrized, even parity eigenstates of
the Hamiltonian by writing

uk, ± l = o
,=−m

m

cossaku,u + fk
±du,l s6d

wherefk
± represents the wave-vector-dependent break in the

phase of the wave function due to the interchain interaction
on chains ofN=2m+1 tight-binding sites. Boundary condi-
tions require that the amplitude of the wave function at sites
±sm+1d vanishes, which with Eq.s6d leads to

aksm+ 1d + fk
± =

ps2p + 1d
2

, p P Z. s7d

One can show that the statesuk, ±l with arbitrary phasefk
±

satisfy the time-independent Schrödinger equation at all sites
away from the crossing point since, via direct calculation,
one finds

Ek
±k, Þ 0, ± uk, ± l = k, Þ 0, ± uHuk, ± l, s8d

with

Ek
± = − 2t cossakd. s9d

However, to simultaneously satisfy this eigenvalue equation
at the crossing point as well we must choose the phase angle
fk

± such that

sinskad = 7
t8

2t
cotsfk

±d, s10d

which, with the boundary condition Eq.s7d leads to the
quantization condition

sinskad = 7
t8

2t
tanfkasm+ 1dg. s11d

The solutions of this transcendental equation that determine
the allowed wave vectorsk fand energies via Eq.s9dg are
shown graphically as the set of intersections in Fig. 2 where
the left and right hand sides of Eq.s11d are plotted.

The principal consequence of the crossing point is the
creation of two localized bound states out of the
symmetrized/antisymmetrized statesuk, ±l. We examine the
symmetrized states first. The conditions on the tunneling ma-
trix elementt8 for the appearance of this bound state can be
inferred from Eq.s11d. If

1 ,
ut8u
2t

sm+ 1d s12d

then there is no solution for real wave vectorska,p / f2sm
+1dg, but a new solution appears along the imaginary axis in
the complexk plane atk= ik, wherek is given by

sinhsakd =
ut8u
2t

tanhfaksm+ 1dg. s13d

From this relationship and Eq.s9d, we determine the energy
of the resulting bound state to be

Eb = − 2tÎ1 +
t82

4t2
tanh2fksm+ 1dg s14d

wherek is the solution from Eq.s13d. From the magnitude of
the imaginary wave vector, it is clear that this bound state is
localized on the length scale ofat/ t8,10a. It is important to
note that, due to the appearance of this bound state on any
chain of reasonable length, the energy of the electronic de-
grees of freedom is decreased by a quantity on the order of

FIG. 2. Graphical solution of Eq.s11d. Allowed k values lie at
the intersections of the solid line with the long dashesssymmetric
bandd and with the short dashessantisymmetric bandd. The vertical
lines represent the unperturbedk values.
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the tunneling matrix elementt8. In the limit of an infinite
chain wherem→`, one sees from the above equations that
ak,Os1d and tanhs·d in Eq. s14d becomes one in agreement
with previous workf21g. This rearrangement of the elec-
tronic degrees of freedom has dramatic consequences for the
polymer conformational dynamics as we show below.

In addition to this lower-energy bound state, a second
localized state is pulled from the conduction band of anti-
symmetrized states. In this caset8→−t8 as discussed below
Eq. s5d. From Eqs.s12d and s13d we now find that the com-
plex wave vector associated with the bound state becomes
k= ik+p /a; the bound state appears at the edge of the Bril-
louin zone and the energy of the state is −Eb. It is interesting
to note that the appearance of these two localized states at
energies ±Eb is directly analogous to the appearance of
bonding/anitbonding states in covalently bonded atomsf22g.
In the present case, however, we build these states out of
spatially extended conduction-band states rather than the lo-
calized atomic orbitals.

There are still other consequences of interchain tunneling
for the scattering states that remain in the conduction band.
In other words, all the even symmetry, extended states of the
unperturbed chains are shifted in energy due to their interac-
tion with the crossing point at site zero. These scattering
states remain extended, i.e., retain a purely real wave vector,
but that wave vector shifts due to the interaction with the
crossing point. Fort8=0 we trivially find these extended
states atkp

s0d=ps2p+1d / s2Nd for integerp. Due to scattering
at the crossing point, these wave vectors shift so thatkp

→kp
s0d+Dkp. These shifts can be computed by expanding

both sides of Eq.s11d nearkp
s0d. From this expansion we find

to leading order int8 /N that

Dkp =
− t8

2tN sinkp
S1 +

t8

2tN

coskp

sin2 kp
D + OS 1

N3D . s15d

Using the above shifts inkp, we can compute using Eq.s9d
the sum of the shifts in the energy levels of these scattering
states in the symmetrized band. Recalling that we need to
also include the analogous shifts in the chain antisymme-
trized band, which eliminates terms odd int8, we find that
the total shift is

DE = − S t8

N
D2

o
p=1

smfd coskp

2t sin2 kp
, s16d

where the sum is over all filled energy levels from the bot-
tom of the conduction band tomf set by the Fermi level of
the system. Since the sum of all such energy shifts of the
extended states vanishes in the limit of largeN as 1/N, the
change in the energy of the scattering states in the band is not
significant for long chains. Hereafter we will ignore the finite
lengthfOs1/Ndg correction. The principal result is that there
is an attractive interchain interaction due to a reorganization
of the electronic degrees of freedom of the system. The en-
ergetically dominant part of this reorganization is the appear-
ance of the “bonding” bound state which lowers the elec-
tronic energy essentially byt82/ t.

Since the dominant contribution to the electronic energy
shifts comes from a localized state at the crossing point, it is
perhaps not surprising, that, when the above analysis is gen-
eralized to the case of a crossing point at an arbitrary point
along the chain, the principal, qualitative result is unchanged.
We will show below that this basic result is effectively in-
sensitive to interactions between such crossing points in
chains that form a multicrossing-point “braid.” We do this in
two steps by first considering an ordered array of crossing
points and then by examining a spatially disordered set of
crossing points; see Fig. 3

B. Ordered array of crossing points

One may wonder about the effect of a multiple set of
interchain crossings. Specifically, if, as appears above, one
crossing point decreases the overall energy of the electronic
states of the system, is it more profitable for the chains to
form many such crossing points, and if so, at what density?
To address this question, we first consider the simplest such
structure—an ordered array of crossing points at everyMth
site along the chains. The ordered structure forms, in effect, a
superlattice in which the unit cell is constructed from one
crossing point and a basis ofM −1 tight-binding sites be-
tween consecutive crossing points. Qualitatively, one expects
the localized states centered at each crossing point to merge
into an impurity band in the lattice. We explore this point
below paying particular attention to the interchain binding
energy per unit length of the polymers.

To begin we note that within a single supercell of the
superlattice, the tight-binding Hamiltonian becomes

Hn = − t o
,=1

M−1

hu,,nlk, + 1,nu + u, + 1,nlk,,nuj + luM,nlkM,nu

s17d

where the stateu, ,nl is a position eigenstate representing an
electron at the,th site in thenth supercell. Due to the inter-

FIG. 3. Two polymers interacting at a series of localized sites. In
the upper figure the two chains form an ordered structure in which
a crossing point appears after exactlyM tight-binding sites. The
lower figure represents the disordered version of the braid. Below
each braid is a pictorial representation of the appropriate tight-
binding Hamiltonian in which the filled circles represent the inter-
chain tunneling sites. In the disordered two-chain braid, the number
of sites between crossing points varies along the chains,M→Mi,
but the sameMi sites exist on both chains between the crossing
points.
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chain tunneling at theMth site in each supercell, there is a
localized potential for the electron to reside there. In the
above equation and in what follows we find it convenient to
suppress the ± notation describing the interchain symme-
trized and antisymmetrized states. We have seen above in Eq.
s5d that the only difference in the form of the Hamiltonian
acting on these two subspaces of opposite chain-exchange
symmetry is the shiftt8→−t8. In the above equation, that
t8-dependent term in the Hamiltonian is given in terms ofl
which takes on the valuet8s−t8d for the antisymmetrized
ssymmetrizedd states. To complete our superlattice Hamil-
tonian, we include a simple tunneling term to couple the
states in each supercell. Here, as before, we assume that the
presence of the crossing chain does not affect the intrachain
hopping matrix element, although such effects could be
taken into account using the present tight-binding formalism.
The coupling term is

Hn8 = − thuM,nlk1,n + 1u + u1,n + 1lkM,nuj. s18d

The first term in the above equation couples the crossing
point site in thenth supercell to the tight-binding site to its
right fin the sn+1dth supercellg with the usual intrachain
hopping matrix element, while the second term allows for
electron hopping from the first site in thesn+1dth supercell
onto the crossing point site to its immediate left that is part
of the nth supercell. The full Hamiltonian of the system is
simply the sum of these two terms summed over allN super-
cells:

H = o
n=1

N/M

sHn + Hn8d, s19d

where we have used periodic boundary conditions so that the
sN/M +1dth supercell is identified with the first supercell.
Since the principal effect of the interchain tunneling on the
energetics of the system has been shown to be the appear-
ance of localized bound states for a single crossing point, the
net effect of periodic boundary conditions used here is mini-
mal.

In order to diagonalize the Hamiltonian given by Eq.s19d,
we introduce two wave vectors conjugate to the real-space

degrees of freedom that index the supercelln and the site
within each supercell, by writing unnormalized states

uq,kl = o
n=1

N/M

o
,=1

M

eiqaMnseiak, + Aq,ke
−ika,du,,nl, s20d

where Aq,k will be determined below andN/M counts the
number of supercells on the chain. The allowed values ofq
are fixed by the periodic boundary conditions to beq
=2pn/Na where n is an integer such that −N/2M ,n
,N/2M. We now insist that these states, which are eigen-
states of the supercell translation operator are also energy
eigenstates:Huq,kl=Esq,kduq,kl. This relation can be trans-
lated into three related equations formed by projecting the
above relation onto three carefully chosen states. We require
that

k,̄,n̄uHuq,kl = Esq,kdk,̄,n̄uq,kl, s21d

k1,n̄uHuq,kl = Esq,kdk1,n̄uq,kl, s22d

kM,n̄uHuq,kl = Esq,kdkM,n̄uq,kl, s23d

where,̄Þ1,M and the index of the supercelln̄ is arbitrary.
The first condition determines the energy values to be
Esq,kd=−2t cosskad. Note that since condition Eq.s21d ap-
plies to the interior of each supercell, the energy eigenvalues
appear to be independent ofq andl. This apparent lack ofq
and l dependence is false, as we will soon be forced to
require that the allowed values ofk depend on these param-
eters. The second and third conditions above acknowledge
the special role of the crossing point in the Hamiltonian.
From the second condition, we determine the parameterAq,k.
In order to satisfy the eigenvalue equation at the leftmost site
in a supercell, we find

FIG. 4. The density of states as a function of energy for an
ordered array of crossing pointsssolid lined and a disordered array
of crossing pointssdashed lined. In both cases the density of binding
sites isp=1/M =0.125 andl / s2td=−0.25.

FIG. 5. Plot of the change in electron energy as a function of
linker density for cases of quenched, disordered positionssshort
dashesd and ordered positionsssolid lined. By assuming the inde-
pendence of the binding sites so that each linker contributes 4t2

−s4t2+ t82d1/2, one arrives at a reasonable linear approximation to
the binding energy as a function of cross-link densityslong dashesd.
Inset: Plot of the change in energy for an ordered lattice vs
1/density. Both plots usel /2t=0.25.
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Aq,k =
eiskaM−qd − 1

1 − e−iskaM+qd . s24d

In the above result we have used the energy eigenvalues
obtained from enforcing the first condition. Finally, the com-
bination of the third condition Eq.s23d along with the energy
eigenvalue used above leads to a relation betweenk, q, andl
of the form

l

2t
tanskMad = − F1 −

cossqMad
cosskMad Gsinskad. s25d

The above equation may be read as an implicit form of the
relation ofk uponq and l, i.e., k=ksq,ld. Note that in the
limit of a very sparse array of crossing points, i.e.,M→`,
we recover the condition on imaginaryk for the isolated
bound state given in Eq.s13d. However, asM becomes
smaller, we find a small modification in this condition and
the introduction of a lattice momentumsqd dependence ink.
We now turn to the calculation of the density of states

gsEd=]N /]E whereN is the total number of energy eigen-
states with energy less thanE. Using the density we compute
the total energy of the electronic degrees of freedom of the
braided polymers. The density of states can be written as

gsEd =
]N
]k

S 1

]E/]k
D . s26d

The second derivative in the product above is computed
trivially from the dispersion relation. Using the quantization
of the wave vectorq, the first derivative can be expressed as

]N
]k

=
]N
]n

]n

]q

]q

]k
=

NMa

2p

]q

]k
s27d

where the first term in the product reflects the fact that for
each wave vectorq=qn=2pn/ sNad there areM allowed val-
ues ofk, one for each of theM bands in the system. The
second term in the above product expresses the
q-quantization condition; this leaves only the last term to be
computed from Eq.s25d. This derivative is given by

]q

]k
=

sl/2tdf− M cosskaMd + sinskaMdcosskad/sin2skadg + M sinskaMd
MÎ1 − fsl/2tdsinskaMdcscskad + cosskaMdg2

. s28d

Now, the total energy of the electronic states of the chains
can be computed from Eqs.s26d, s27d, ands28d.

One expects from the calculation of the isolated crossing
point that the change in electronic energy is almost entirely
due to the creation of a narrow band of bonding states below
the conduction band so it is reasonable to imagine that the
total change in electronic energy is independent of the Fermi
level. For convenience we choose the Fermi level to beEF
=0. Since there is at most one energy eigenstate for each
scomplexd value of k, we may write the total energy of the
electronic system as an integral overk of the density of states
and the dispersion relation. All possible states below the
Fermi level are explored by integrating along the following
contour in the complex plane:C=s−i` ,0dø s0,p /2d which
is the combination of the negative imaginary axis and the
segment of the real axis spanning 0 top /2. The density of
states along this contour is shown in Fig. 4 as a function of
energy. Lastly, using Eq.s25d we note that for there to be an
energy eigenstate with a givensq,kd, it must be true that
ul / s2tdsinsMakdcscsakd+cosskaMdu,1 so that the denomi-
nator of Eq.s28d must be real. To enforce this condition over
thek integration we take the real part of the integral to write

E = ReE
C

]N
]k

Eskddk. s29d

The change in the total electronic energy as a function of
t8 and M can then be computed; these results are shown in
Figs. 5 and 6. The observed even-odd effect in Fig. 5 is an
artifact of our choice of the Fermi level. For chains with even

M, a band gap will open atEF=0 resulting in an additional
reduction in the energy. In practice, we expect that the Fermi
level of doped polymers will not lie at a place of such high
symmetry and the dominant contribution to the energy will
be the creation of localized bound states.

The principal result of this calculation is that, due to the
highly localized nature of the bonding states at each crossing
point, the total interchain binding energy is essentially a lin-
ear function of the crossing point density. In other words the
attractive interaction at each crossing point is highly inde-
pendent of the local density of such crossing points at least
until M decreases to order unity.

C. Disordered array of crossing points

As a final point regarding the electronic contribution to
the interchain adhesion, we now allow the set of crossing

FIG. 6. Plot of the change in electron energy as a function of the
interaction strength for random disordersshort dashesd, perfectly
ordered potentialssolid lined, and under the independent-linker as-
sumption where each cross link contributes 4t2−s4t2+ t82d1/2 slong
dashesd. Here the cross-link density is 0.1.

J. D. SCHMIT AND A. J. LEVINE PHYSICAL REVIEW E71, 051802s2005d

051802-6



points to become disordered in a specific manner as shown in
the lower part of Fig. 3. We allow the number of tight-
binding sites between two crossing pointssMd now to vary
along the chain in an uncorrelated manner so that the chains
may be described by a sequences of such spacings
M ,M1,M2,… ,Mp. We note as we did after Eq.s3d that we
restrict the form of the randomness to cases in which the
samesequence can be used to describe both chains. The
advantage of this restriction is that the interchain interaction
part of the Hamiltonian is still diagonal in the basis of chain
symmetrized/antisymmetrized wave functions.

When considering the chain-symmetrized/
antisymmetrized subspaces individually, the Hamiltonian
given by Eqs.s2d and s3d is identical to the two-component
random lattice problem, which has been extensively studied
f23–26g. For completeness we recapitulate the discussion of
the general formalism of the coherent potential approxima-
tion sCPAd developed therein while applying that formalism
to the system at hand. We begin by expanding the propagator
of the full, disordered systemG in terms of the propagator of
a uniform systemG0 with a fixed and as yet unspecified
on-site potential. The propagator for the uniform system is
given by

G0 =
1

E − H0
s30d

where

H0 = − to
,=1

N

su, + 1lk,u + u,lk, + 1ud + vo
,=1

N

u,lk,u s31d

and v is the spatially independent on-site energy. The full
Hamiltonian of the disordered system is given by the sum of
H0 from Eq. s31d and scattering potentials at each site given
by

HI = o
,=1

N

s«, − vdu,lk,u. s32d

In the above equation, the random variable«, introduces the
quenched disorder by introducing uncorrelated tunneling
sites with densityp along the chain. This random variable
takes the valuel with probability p and is zero otherwise
where, as before,l is ±t8 for the chain-antisymmetrized/
symmetrized Hamiltonian.

One can show in the usual way that the propagator for the
full, random systemG can be expressed perturbatively in
terms of the tunneling HamiltonianHI and propagator of the
uniform system so that

G =
1

E − H
= G0 + G0HIG0 + ¯ . s33d

Our goal, as before, is to compute the density of states of the
systemgsEd, which is given in terms of the propagator as

gsEd = −
1

p
Imo

,

k,uGu,l s34d

where the sum is over a complete set of states. To approxi-
mate this sum accurately, we follow the work of Sovenf26g
and first reorganize the perturbation series given in Eq.s33d
by introducing theT operator representing the Born series for
scattering off a particular site,,

T, = u,ls«, − vdk,u + s«, − vd2u,lk,uG0u,lk,u + ¯

=
1

1 − k,uG0u,ls«, − vd
u,lk,u, s35d

so that Eq.s33d implies

k,8uGu,l = k,8uG0u,l + o
,̄

k,8uG0u,̄lT,̄k,̄uG0u,l

+ o
,̄Þ,̄

¯

k,8uG0u,̄lT,̄k,̄uG0u,̄¯lT,̄
¯k,̄¯uG0u,l + ¯ .

s36d

The successive terms in the above equation represent the
propagator of the electron in the uniform system followed by
a correction due to the interaction of that electron with the

scattering potential at site,̄, followed in turn by the interac-

tion of that electron with sites,̄ and,̄
¯

; the higher-order terms
snot shown aboved have an analogous interpretation. It is
important to note that, due to the reorganization the pertur-
bation series in terms of theT operators, the effect of the
electron interacting with thesamesite successively has been
already taken into account. Thus, in the sums representing
the second- and higher-order terms it is necessary to restrict
the summation to avoid revisiting the same site twice in a

row, e.g.,,̄Þ ,̄
¯

in the second-order term above.
We now choose the heretofore arbitrary on-site potential.

One might imagine that it would be reasonable to choose that
potential simply to be the mean of the on-site energies of the
disordered system by takingv=pl; however, we are not at-
tempting to average the Hamiltonian over the disorder but
rather we will be averaging the propagator. Thus, using the
CPA approach, we choose that on-site potential to enhance
the convergence of the perturbation series forG given in Eq.
s36d by takingv such that the average of theT operator over
the quenched disorder vanishes. Representing the disorder
averages byf·g, we choosev such that

fk,uT,u,lg = s1 − pd
− v

1 + vk,uG0u,l
+ p

l − v
1 − sl − vdk,uG0u,l

= 0.

s37d

Now, the reorganized perturbation series in Eq.s36d is
greatly simplified. Sincefk,uT,u,lg=0 andT operators at dif-
ferent sites are uncorrelated, fk,uT,u,lk,8uT,8u,8lg
=fk,uT,u,lg3 fk,8uT,8u,8lg=0, we see that first correction to
G0 is fourth order in theT operators. In the limit of weak
scattering,fGg.G0 swith the advantageous choice forv dis-
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cussed aboved makes an excellent approximation since the
first correction is of orderfpl / s2tdg4.

Finding the density of states in the disordered system re-
quires that we evaluate the trace of the disorder-averaged
propagatorfEq. s34dg as a function ofv; we do this in the
position representation by writing the propagator in the uni-
form system as

k,uG0uml = G0s,,m;Ed =
a

2p
E

p/a

p/a

dk
eikas,−nd

E − v + 2t cosskad

s38d

and extracting the diagonal element

G0s,,,;Ed = ± hsE − vd2 − 4t2d−1/2 s39d

where the sign above is determined by whether the magni-
tude of sE−vd /2t+fsE−vd /2t−1g1/2 is greater or smaller
than unity. In the uniform system the sum on position eigen-
states is trivial as seen by the, independence of the right
hand side of the above equation. However, determining
G0s, ,, ;Ed andv simultaneously requires that we solve two
polynomial equations given by Eqs.s37d and s39d.

The binding energy is determined by integrating Eq.s34d
over the filled states. For convenience, we chose the Fermi
level to again lie atEF=0. The results are shown in Figs. 5
and 6. As with the ordered lattice of binding sites, we find
that the binding energy of the disordered braided chains is
very nearly a linear function of the density of sites.

We can conclude that the primary effect of introducing
binding points between the polymers is the creation of im-
purity bands centered at the energy given by Eq.s14d. The
states in the impurity bands are created at the expense of
states near the band edges,E= ±2t. However, the density of
states far from the band edges is essentially unchanged. This
can be easily proved for a random arrangement of the impu-
rities. We first note that the density of states is given by

gsEd =
1

p

]F

]E
s40d

=
1

p

]k

]E
SN + Np

] ū

]k
D , s41d

whereF is the phase of the wave function at the last site on

the chain,p is the density of impurities, andū is the average
phase shift as the wave function passes through an impurity.
For an impurityl at the origin s,=0d, the wave function
takes the form

ukl = o
lø0

cosskla + fdull + Ao
l.0

cosskla + f + udull, s42d

whereA is an amplitude to be determined. The phase shift is
given by

u = tan−1Stansfd −
l

t sinskadD − f. s43d

Averaging over the incident phase,f, we find the average
phase shift

ū =
tl cosskad

4t2sin2skad + l2 . s44d

This shift is odd in the impurity strengthl; therefore the
change in the density of states from the symmetric and anti-
symmetric bands will exactly cancel. Therefore, the reorga-
nization of electronic energy must occur where this argument
breaks down, namely, when the separation between binding
sites is comparable to the wavelength, i.e., when sinskad
.0. At this region near the band edges states are removed to
form the imaginary wave number impurity states.

The role of the impurity band as the source of the binding
energy is further supported by the “single state” or indepen-
dent binding site approximationslong dashesd line in Figs. 5
and 6. This line is the binding energy that would be obtained
if the sole effect of adding a binding site were to move a
single electron from the bottom of the bandsE=−2td to the
energy of the isolated bound statefEb=−s4t2+ t82d1/2g. This
line is an excellent approximation for the binding energy of
both the ordered lattice of binding sitesssolid lined and the
random array of binding sitessshort dashesd.This supports
the suggestion that the creation of the impurity band is the
dominant effect in the reorganization of electronic energy.

D. Parallel configurations

If the chains adopt a parallel configuration, then there will
be an overlap between each site and the corresponding site
on the opposite chain. This interaction is easily diagonalized
with the transformation given by Eq.s4d. This yields the
dispersion relation

E±skd = − 2t cosk ± t8. s45d

We can solve for the binding energy of the polymers in
this zipped configuration if the polymers are lightly dopedsa
general solution for the zipped configuration eigenstates may
be found in Appendix Ad. We assume that each polymer is
doped withNd /2 electrons whereN is the number of tight-
binding sites on each chain. Ifd!1, then prior to zipping, all
these electrons will have energy very near −2t at the bottom
of the band. When the polymers bind over the length ofm
monomers, then states are created with energyE,−2t with a
density of states 2mf4t2−sE+ t8d2g−1/2/p where the extra fac-
tor of 2 accounts for the spin degeneracy. The electrons in
these states have lowered their energy by

DE = −
2m

p
Î4t2 − s− 2t + t8d2 −

2m

p
s2t − t8d

3Fsin−1S t8

2t
− 1D +

p

2
G . s46d

This corresponds to a binding energy of.−4t83/2/3pÎt per
site.

If the chains zip past a critical number of monomersmc
=dp /2cos−1st8 /2t−1d then all the electrons have energy
,−2t. These electrons now have imaginary wave numbers in
the unzipped region of the chain; therefore the unzipped re-
gions will no longer be metallic. The binding energy is now
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DE = −
4tm

p
sinSNdp

m
D − Ndt8 + 2tNd, s47d

where dN is the total number of dopant electrons coming
from both polymers. Since the derivative of this binding en-
ergy with respect to the length of the binding regionsmd is
negative, we note that the electrons exert an effective pres-
sure to increase the size of the zipped regionf27g. When they
form, we expect the length of the zipped regions to be lim-
ited only by the number of conduction electrons.

The binding energy per binding site in a zipped region is
,t83/2t−1/2 whereas in the braided configurations the binding
sites reduce the energy by,t82t−1. The zipped configuration
exhibits stronger binding per site byÎt / t8; since generically
t8, t, the electronic degrees of freedom favor zipped con-
figurations of the chains over braided ones. To determine
whether a pair of chains will, however, form such zipped
regions or the random braids, we must consider the energet-
ics associated with the conformational degrees of freedom of
these charged polymers in water.

III. CONFORMATIONAL DEGREES OF FREEDOM OF
THE CHAINS AND EQUILIBRIUM STRUCTURES

The equilibrium state of aggregating polymers depends on
the combination of the binding energy due to the electronic
degrees of freedom and the change in the translational and
conformation free energy of the polymer. From the interplay
of these two contributions to the total free energy, we explore
the transition from free chains in solution to chain aggregates
and discuss their equilibrium structure. We compare the free
energies ofsid isolated chains in solution,sii d braided pairs of
chains consisting of unbound loops between isolated cross-
ing points, andsiii d parallel or “zipped” configurations in
which the chains have numerous consecutive tunneling sites
along their length. The aggregation of DNA in the presence
of divalent ions has been approached in a similar manner
f28,29g; however, in the present system there is no quantity
analogous to the fixed concentration of linking divalent ions
since the interchain binding sites are created spontaneously
at chain intersections.

We begin by considering the chains of lengthL=Nat,
whereat is the distance between tight-binding sites that also
carry a net linear charge density in solution equal toe/ac. We
study the coexistence of free and paired chains in solution by
writing the free energy of the solution in terms of a total
concentration of chainsn and concentration of bound-chain
pairsn2 f30g. This free energy takes the form

Fsn2d
kBT

= sn − 2n2dflnsn − 2n2d − 1g + n2sln n2 − 1d + n2

Fb

kBT
.

s48d

In the above expressionFb is the free energy of the bound
states of the chain excluding the translational entropy. The
first two terms of Eq.s48d represent the translational entropy
of the isolated chains and bound pairs, respectively.

Minimizing Eq. s48d, we find that the concentration of
dimers isn2expfsFbd /kBTg. It remains now to calculate the

interchain binding energyFb, which is a combination of
electrostatic chain repulsion and chain binding due to the
proposed tunneling mechanism. We do not include van der
Waals interactions between chains. This longer-ranged at-
tractive interaction is generically stronger for the conducting
polymers since the extended electronic states enhance their
low-frequency polarizability. At higher frequencies one ex-
pects that the polarizability at higher frequencies is typical of
small organic molecules since the dielectric spectrum at
higher frequencies is primarily due to localized molecular
states that are similar to all hydrocarbons. Such van der
Waals interactions lead to a longer-range attraction which, in
high salt concentrations at least, are a subdominant correc-
tion to the interchain binding potential when the interchain
distance is on the order of angstroms. In addition the en-
hancement of the van der Waals interaction is significant for
only the metallic rather than the semiconducting state of the
polymers. Thus we expect the interchain tunneling mecha-
nism discussed in this article to dominate the binding energy
of the observed bundles. We examine this point further in
Appendix B.

The binding free energy of two chains referred to in Eq.
s48d is a combination of the electrostatic interaction of the
chains, the bending of the molecules on scales short com-
pared to their persistence length, the random walk entropy of
loops larger than their own persistence length, and the elec-
tronic binding energy of the tunneling sites. Based on the
competition between these attractive and repulsive interac-
tions, the pairs of chains can adopt a variety of configura-
tions. For polymers of high linear charge density we expect it
to be possible to form “loosely” braided states in which
loops of the chains between consecutive binding sites are
longer than a persistence length. Moving to lower charge
densities, these loosely braided structures will become
“tight” braids in which the unbound loops are smaller than a
persistence length. Finally, at even lower charge densities
one finds parallel “zipped” states of the chains.

We consider only high-salt solvents where the Debye
length is much smaller than the persistence length. Under
such conditions the interchain electrostatic repulsion is sig-
nificant only near the crossing points. There the charged
chains can be treated as crossed straight rods. If two charged
rods cross at an angleu with a distance of closest approachd
the electrostatic energy is

Eelectro=
2pkBTlBe−kd

kac
2sinu

, s49d

where lB=e2/ekBT is the Bjerrum length,ac is the average
separation between charges along the backbone, andk−1 is
the Debye screening length.

We first consider the possibility of loose braids in which
the free energy of the polymer loops between tunneling sites
is dominated by their random walk entropic contribution
rather than the enthalpic contribution arising from the me-
chanical bending modulus of the polymer. Loose braids must
therefore be larger than a persistence length. The free energy
of two loosely braided chains such that there is a length, of
free polymer between tunneling sites can be written as
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Fb
LB =

L

,
F− S t82

2t
− DD − kBTH2

,

,p
A − c lnS2,

,p
DJG ,

s50d

whereD=2pkBTlBe−kd/kac
2 is the electrostatic repulsion of

the chains at the tunneling site. In the above equation the first
term is the binding energy of a tunneling site that is the
combination of the binding energy coming from the conduc-
tion electrons and the electrostatic repulsion of two charged
chains in close proximity. The strong repulsion forces the
two chains to cross at right angles; this crossing configura-
tion is taken into account above. The final two terms repre-
sent the asymptotic form of the entropic contribution of the
polymer between binding sites in the limit of large loops.
The constantA is of order unity. The entropy reduction of the
self-avoiding chain of length 2, due to the loop formation
results in the last term; calculations suggest that the constant
c is also of order unityf31,32g. Upon minimization of the
above free energy with respect to,, the size of the loops in
the loose braid, we find that, is driven to arbitrarily small
values when the binding energy is negative and to infinity
when that binding energy is positivesi.e., net repulsive inter-
actions at the tunneling sitesd. Thus loose braids are not a
thermodynamically stable phase of the polymers. Should re-
duction in energy due to the interchain tunneling mechanism
overcome the screened electrostatic repulsion of the chains
and the entropy cost of forming a single loop, the chains will
bind densely along their length until the bending energy of
the polymers becomes the limiting factor. At this point one
enters the regime of tight braids where the bending energy of
the chains dominates the entropic contribution to the free
energy considered above for loose braids. Our result differs
from the studies of Borukhovet al. f28,29g of polyelectrolyte
aggregation mediated by divalent ions is that the number of
binding sites for the conjugated polymers is not conserved.
Loose braids continue to create new binding sites until the
braid loop approaches a single persistence length. In order to
study these tight braids we turn to the calculation of chain
bending energy.

The bending energy of a polymer is

Ebend=
kBTlp

2
E dl

Rsld2 , s51d

wherelp is the persistence length, andRsld is the local radius
of curvature. When the separation between binding points is
comparable to the persistence length we say that the chains
adopt a tight braid configuration in which the bending energy
of the chain dominates its random walk entropy over each
unbound loop. Furthermore, in the limitk−1!,p the crossing
angle will be very close top /2 and the polymer conforma-
tion between binding points will be well approximated by the
arc of a circle. Thus for tightly braided configurations we
write the energy per length of the polymers as

Eb
TBs,d =

L

,
FD +

kBT,pp2

4,
−

t82

2t
G , s52d

where, is the arclength of the polymer between intersections
and the electrostatic repulsionD is defined above. The first

two terms represent the energy cost associated with electro-
static repulsion at the cross links and the bending energy of
the chains between those cross links, respectively. In the
tightly braided state these terms are more than offset by the
energy reduction due to the formation of binding points
shown in the third term. Here we have neglected the configu-
rational entropy of the loops of chain making up the tight
braid. There remains, however, the configurational entropy of
the random walk of loops making up the braid. Thus the free
energy of the tightly braided chains can be written as

Fb
TBs,d = Eb

TBs,d − kBT
L

,
, s53d

where, is the length of polymer in one loop of the braid.
Minimizing Eq. s53d with respect to,, we find that the free
energy becomes

Fb
TB = −

sD − kBT − t82/2td2

kBT,pp2 L. s54d

We now turn to the zipped configuration of the chains. To
consider the electrostatic interaction between the two chains
in a parallel configuration, we note that the potentialF a
distancer away from a thin charged rod in a salt solution is
given by

Fsrd =
2lBkBT

ac
K0skrd, s55d

whereK0 is a modified Bessel function. The energy of two
polymers separated by a distanced and bound over a length
L! is found from the combination of the electrostatic repul-
sion of the chains in close proximitysdistancedd given by
the above equation and the binding energy due to the tunnel-
ing mechanism given by Eq.s47d. Including the chain en-
tropy of the remaining free sections of total length 2sL
−L!d we find the binding free energy to be

Fb
zip = Eb

zipSL!

L
D − 2kBT

L

,p
S1 −

L!

2L
D , s56d

where the binding energy term is given by

Eb
zipsL!/Ld

L
=

L!

L
FC −

4t

pat
sinS dp

L!/L
DG −

t8d

at
S1 −

2t

t8
D

s57d

andC=2lBkBTK0skdd /ac
2. For stiff chainsslp@atd so that we

may neglect the entropic contributions above, the quantityL!

appearing in Eq.s56d is simply determined by minimizing
that equation with respect toL!, which yields

SL!

L
D3

.
4td3p2

3atsC + kBT/,pd
. s58d

One may imagine that the bound region of total lengthL!

will break up into a number of fragments along the chain.
Simulations of polyelectrolytes bound by divalent ionsf29g
suggest that the division of the bound region into numerous
smaller regions results in an increase in the total free energy
due to the reduced entropy of the free chain segments. The
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electron degeneracy pressure in the bound regions further
enhances the aggregation of the bound segments.

Based on these considerations we propose a schematic
phase diagram for charged, conducting polymers in solution.
This diagramsshown in Fig. 7d, which represents the range
of phase behavior of these polymers, is spanned by the per-
sistence length and thessuitably scaledd inverse, linear
charge density of the chains. This inverse charge density is
measured in terms of the ratio of the distanceac between
charged groups along the polymer backbone divided by the
distance between potential tunneling sites,at. Implicit in this
diagram is an assumed level of doping of the conduction
band of the polymers. In principle the doping level demands

a third axis to the figure, but, as discussed below, the effect
of varying the doping of the conduction band can be sub-
sumed into a trivial shift of the figure. In the upper right
portion of the figure the chains are both stiff and have a high
charge density relative to their density of potential binding
sites. Thus, although a pair of chains may form a single
bond, in the thermodynamic limit the density of binding sites
is zero. Generally, moving down and to the right in the dia-
gram induces intermolecular binding due the mechanism pre-
sented in this work. The equilibrium bound configurations
take the form of parallel, tightly bound pairs, which we de-
note as zipped chains or as less densely bound braids.

The onset of braiding is determined by setting the contour
length between binding sites equal to the total contour length
of the chain,L. This gives the free-chain/braid boundary as

,p

L
=

2

kBTp2S t82

2t
−

2pkBT,pe
−kd

kac
2 D . s59d

The term in parentheses on the right hand side of the above
equation is collectively the effective binding of one inter-
chain crossing. The first part of that term is the binding en-
ergy due to the reorganization of the electronic states of the
polymers while the second term represents the reduction in
binding energy associated with the electrostatic interaction of
the two chains. For the cases of current interest in which a
single interchain bond is favorable the right hand side of Eq.
s59d is positive.

To explore the boundary between zipped and braided
states of the polymers we compare the energy of the braided
configuration given by Eq.s54d to the energy of the zipped
configuration given by Eq.s60d. For the case of lightly doped
chains so that contour length of the zipped regionsL! is
smaller than that of the whole polymer, one finds that the
boundary between braided and zipped chain configurations
occurs where

,p

L
=

st82/2t + kBT − 2pkBT,pe
−kd/kac

2d2 − 2skBTpd2s1 − L!/2Ld
L!kBTp2f4t83/2/2patt

1/2 − 2,pkBTK0skddac
−2g

. s60d

This phase boundary continues to smallerac/at until it inter-
sects the free/braid boundary discussed above. There it ter-
minates. SinceL!!L, the primary effect of the doping level
of the chain appears here as the prefactorsL!d which simply
shifts the vertical position of the boundary between zipped
and braided configurations in the phase diagram. The basic
structure of the diagram is, however, unaffected by the pre-
cise level of chain doping.

Finally, we find the line separating the free chains from
the zipped chains by subtracting the free energy of two free
chains, 2kBTL/,p, from Eq. s56d and setting the resulting
expression equal to zero. The resulting boundary is described
by the equation

,p

L
= F−

2LlB
ac

2 K0skdd +
4tL

patkBT
sinSLdp

L! D
+

L2d

L!kBTat
st8 − 2tdG−1

. s61d

This expression gives a line with a large negative slope that
reflects the fact that short persistence lengths favor the free
chains due to increased conformational entropy in the un-
bound state.

IV. DISCUSSION

We find that conducting polymers in the metallic state,
i.e., where the Fermi level lies within a band, will generically

FIG. 7. Schematic phase diagram for two charged, conducting
polymers. This diagram is spanned on the vertical axis by the per-
sistence length scaled by the total contour length of the chain while
the horizontal axis is the dimensionless ratio of the the distance
between charges along the chainac to the distance between poten-
tial tunneling sitesat. In the upper left region of the figure, chains of
high charge density and long persistence length are unbound in
solution sfreed; upon reducing the linear charge density along the
chain and moving to the right in the diagram the chains generically
become bound in a parallel or zipped configuration. For flexible
enough chains of intermediate charge density, however, more loose,
braided configurations are predicted.
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aggregate in solution due to the reorganization of the elec-
tronic degrees of freedom of these molecules upon the close
sangstrom scaled approach to each other. This reorganization
of the extended electronic states of the molecule results in
the formation of localized bound states at these crossing
points and the consequent reduction of the electronic energy
more than compensates for the reduction of chain configura-
tional entropy due to the creation of the cross links between
the two polymers. It is interesting to note that these localized
bound states are the direct analogs of the standard binding
and antibinding orbitals that are created out of atomic elec-
tronic states upon the close approach of their respective nu-
clei. In the case of conducting polymers, however, these lo-
calized bound states are created out of the extended states of
the metallic molecules.

The localized nature of these states has the consequence
that the binding energy is very nearly linear in the density of
binding sites when these sites are separated by at least a few
monomers as they are in all braided configurations. How-
ever, when the polymers lie in parallel, zipped configura-
tions, the resulting binding energy per site is stronger than
the isolated binding sites byO(st / t8d1/2). The equilibrium
structures formed by these polymers will depend not only on
the interchain binding mechanism, but also on the linear
charge density of the polymers, solvent screening, and the
persistence length of the polymer. The combination of these
factors will determine whether the polymers form loosely
braided structures, or tight bundles.

Based on these considerations we have proposed a sche-
matic phase diagram showing the expected equilibrium
structures that may be observed in such systems. For large
enough linear charge density, one finds that the lowest-
energy state of the aggregate is a braid consisting of loops of
unbound polymer between cross-linking binding sites. For
smaller linear charge density one finds that the energetically
favorable configuration is two parallel chains where the in-
terchain distance remains on the order of a few angstroms all
along their arclength.

Clearly, the direct experimental observation of such struc-
tures is difficult. We note that small-angle neutron scattering
experimentsf15,17g are consistent with the formation of
bundles in aqueous solutions, but the spatial resolution of
these experiments is not fine enough to distinguish between
the braid and parallel phases discussed above. Moreover, the
current calculations are not directly applicable to these ex-
periments since previous experimental studies focused on
semiconducting polymers. Nevertheless, our proposed bind-
ing mechanism mediated by the reorganization of the elec-
tronic degrees of freedom is also relevant to the semicon-
ducting casef33g. Since it will likely remain difficult to
quantitatively test the detailed structure of the aggregate one
must directly probe the electronic states by studying the
spectroscopic signature of the molecules as they aggregate.
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APPENDIX A: ZIPPED CONFIGURATION STATES

Here we solve for the eigenstates for two chains that are
zipped together over a portion of their length. The Hamil-
tonian is

H0 = − to
,=1

N−1

su, + 1lk,u + u,lk, + 1ud + o
,=1

N−1

vlu,lk,u sA1d

wherevl =0 in the unzipped regionss1ø l øn and n+m+1
ø l øNd and vl =l in the zipped regionsn+1ø l øn+md.
Herel= 7 t8 for the symmetricsantisymmetricd states,m is
the number of sites in the zipped region, andn sn8d is the
number of sites in the unzipped region to the leftsrightd of
the zipped region. The chains have a total length ofN=n
+m+n8. The eigenfunctions are of the form

ukl = o
l=1

n

sinslkdull + A o
l=n+1

n+m

sinslk8 + fdull

+ B o
l=n+m+1

N

sinslk + udull, sA2d

whereA and B are undetermined amplitudes, and −2t cosk
=−2t cosk8+l. The boundary conditions are

sinfsn + 1dkg = A sinfsn + 1dk8 + fg,

sinsnkd = A sinsnk8 + fd

A sinfsn + m+ 1dk8 + fg = B sinfsn + m+ 1dk + ug,

A sinfsn + mdk8 + fg = B sinfsn + mdk + ug,

sN + 1dk + u = jp, sA3d

where j is an integer. After some algebra, we find two equa-
tions for k andf:

sinskn8d
sinfksn8 + 1dg

=
sinfk8sn + m+ 1d + fg

sinfk8sn + md + fg
, sA4d

cotsk8n + fd =
cotskndsinskd − l

sinsk8d
. sA5d

From these equations we find the quantization condition for
k,

jj8 + sj + j8dsinsk8dcotfk8sm+ 1dg − sin2sk8d = 0, sA6d

where

j ; sinskdcotsnkd − l,

j8 ; sinskdcotsn8kd − l. sA7d

From these conditionsfEqs.sA6d and sA7dg and the disper-
sion relation
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Ek = − 2t cosskd, sA8d

one obtains the energy eigenvalues.

APPENDIX B: INTERMOLECULAR VAN DER WAALS
ATTRACTION

The van der Waals interaction energy between two like
molecules in a screened medium is given by

EvdW . − I
a0

2e−2kr

e2r6 , sB1d

wherea0 is the polarizability of the molecules,e is the di-
electric constant of the medium,k−1 is the Debye screening
length, andI is the ionization energy of the moleculesf34g.
At wide separations the polymers can be approximated as
conducting spheres with a radiusRg; thus a0.Rg

3. In aque-
ous solutionse.80 and for anI of order eV thenEvdW
!1 eV sincer @Rg. If, on the other hand,r &Rg it is more
accurate to describe the polymers as narrow ellipsoids. In
this situation we approximate the polymers as ellipsoids of
lengthlp and thicknessa that is a monomeric dimension. The
polarizability along the polymer is found to be of orderf35g

ai .
lp
3

lnslp/ad
, sB2d

and perpendicular to the polymer it is

a' . a2lp. sB3d

So, the interaction energy for parallel and perpendicular
polymers is

Ei . I
Ip
6e−2kr

e2r6flnslp/adg2 , sB4d

E' . I
lp
2a4e−2kr

e2r6 . sB5d

For lp.10 nm, e.80, a. r .1/2 nm, I .1 eV, and k−1

.1 nm, we find thatEi .104kBT andE'.2kBT. At high salt
concentrations, when the electrostatic screening lengthk−1

.2 Å, these dipolar interactions are suppressed by a factor
of .104 suggesting that the binding mechanism discussed in
the article dominates at short interchain separation. At lower
salt concentrations van der Waals interactions play a larger
role in the formation of the aggregates, but the structure of
those aggregates will still depend on the interchain electron
tunneling mechanism.
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