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Intermolecular adhesion in conducting polymers
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We analyze the interaction of two conducting, charged polymer chains in solution using a minimal model for
their electronic degrees of freedom. We show that a crossing of the two chains in which the polymers pass
within angstroms of each other leads to a decrease of the electronic energy of the combined system that is
significantly larger than the thermal energy and thus promotes interchain aggregation. We consider the com-
petition of this attractive interaction with the screened electrostatic repulsion and thereby propose a phase
diagram for such polymers in solution; depending on the charge density and persistence length of the chains,
the polymers may be unbound, bound in loose, braidlike structures, or tightly bound in a parallel configuration.
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[. INTRODUCTION and accounting for the dramatic effect of “bystander” mol-
ecules such as surfactants on the valukgf[13], as well as
Conjugated polymers have been the subject of intense rexddressing the role played by chain length of the PPV
search in the physics, chemistry, and materials science corht4,15. Additionally, the PPV-MV system is hindered as an
munities. These molecules provide both a laboratory to exanalytical tool by the tendency of the PPV to aggregate in
plore one-dimensional conductdrs-3] and the potential for  solution and to bind nonspecifically with other small mol-
a plethora of applications in such disparate devices as sol&cules. Neutron and light scatterifig6] demonstrate that
cells[4] and chemo- or biosensof§—8]. The simplest con- PPV solutions form large aggregates under low-salt condi-
ducting polymer system is polyacetylene. The underlyingfions. With added salt, the scattering data can be fitted by
cause of its conductivity, however, is somewhat subtle owingdlike structures having a persistence length of 80[ i
to the fact that, due to the Peierls instabilj§,10] in one suggesting the bundling of the chains in solution.
dimension, this molecule appears to be a semiconductor YNderstanding the tendency of metallic polymers to ag-

(based on an analysis of uncorrelated electrohtere we gregate in solution is the central focus of this paper. We
consider the case of an electron-doped polymer in which th ropose an interchain adhesion mechanism specific to conju-

Fermi enerav lies within th nduction band ated polymers that should apply to doped, solubilized PPV
ermi energy lies w € conduction band. . .and other conducting polymers. When two polymer chains
The utility of conjugated polymers is generally realized in

: ) - roach each other to angstrom-scale distances at some
the complex chemical systems created by adding functlonj?pp g

groups to the conjugated backbone. Such modified polyme oint along their backbones, the interchain tunneling of the

: . . ) - Slectrons(holes in the conduction bands of the two mol-
typically include side groups to modify the conductivity of o165 decreases the total electronic energy of the system.
the backbone by doping in either electrons or holes; polar

S . . . %%his decrease in the energy of the electronic degrees of free-
|0_r_1|zable side groups can _also dramatically increase the 50“6’0m is primarily due to the creation of a low-energy, local-
bility of these molecules in watdil1]. Fluorescent, water- ;o tate at the crossing point of the two chains. These states
s_olub|||zed conjugated poI_ymers such as pc_)lyparaphenylenlgad to the aggregation of the two chains since, for physically
vmylene (PPV) ho'd promise for use as biosensors SINC€easonable parameters, the energy decrease per crossing
their fluorescence. is readily quenched by electron accgptor&oint is on the order of a fewgT. Such an electron tunneling
‘;’Au\(/:h as bme(;hyl wo(ljogel(_lM\l/l). B'OmOIelfutl)?S Itagged WIth 1 echanism has been previously discussed as a source of an
MV can be detected optically at remarkably low concentras .o -hain attractive interaction leading to polymer collapse
tion using these water-soluble conjugated polymers. Fluore§f1 a good solvenf18]. Here we consider polymers having a

cence quenching can be quantified by the Stern-Volmer CONong enouah thermal persistence lenath and at high enouah
stantKgy, which describes the loss of quantum efficiency per g d b g g g

mole of quencher present. Sindés,~10' M~1 for the concentrations in solution that such self-interaction leading
- Sindesy = o collapse as discussed by Hone and Orlgt] is domi-
PPV-MV system, MV tagged biomolecules can be detectenﬁl P y

. ; . ated by interchain adhesion.
via fluorescence quenching at 10Mnconcentrationg12]. The mechanism that we propose is analogous to the cre-

Bgforg this analytic tool can be reahzeq, a number of COM5tion of a molecular covalent bond with the distinction that
plications must be addressed. These include understandlri‘lrg the present system, the bonding and antibonding states
that are localized at the crossing point of the two chains are
not created from normal atomic energy eigenstates, but
*Electronic address: schmit@mrl.ucsb.edu rather are pulled out of the delocalized states of the charge

"Electronic address: levine@physics.umass.edu carriers on the chains. In the remainder of the article, we first
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explore the consequences of this type of interchain bonding

(in Sec. 1) in three stages of increasing complexity. We con-

sider the effect of a single chain-crossing point that leads to

interchain tunneling in Sec. Il A. We then turn to the case of 5
multiple crossing points by considering an ordered array of S
such points in Sec. Il B, before turning to the more physical

case of a thermally disordered set of crossing points in Sec.

I C. Finally, we consider the attraction between two poly- L . . .
FIG. 1. A pictorial representation of the simplest crossed-chain

mers aligned in a parallel configuration in Sec. I D. configuration in which the interchain hopping is allowed at the cen-
In order to determine the adhesive properties of these Coﬁfal site {=0. The spheres represent the tight-binding sites for the

jugated polymers, We_need to compare the decrease in tc%nduction electrons along the chains. The chains need not be
energy of the electronic degrees of freedom of the mOIeCUIEtraight as shown here
to the increase of chain conformational free energy associ- '

ated with adhesion. We turn to the latter calculation in Secadvantage of this restriction is that the full Hamiltonian is

I1l, before combining these two parts of the analysis in Secdjagonal in the basis of chain symmetrized/antisymmetrized
IV wherein we discuss the results and propose experimentg|ave functions. We can consider these two subspaces inde-
tests of this work. pendently in the following. The interchain hopping matrix
elementt’ has been shown numerically to be on the order of
0.1 eV for similar chemical systenj&0]. It is essential to
II. INTERCHAIN ADHESION note that since the interchain tunneling matrix element is
Since we suggest that the adhesive properties of the COls?_xponenetially sensitive to the interchain separation, it is ac-

ducting polymers are a generic consequence of populatin eptable to suppose that this matrix element will be finite at
ly isolated points. In fact, we will later show in Sec. IlI

the conduction band of the these extended molecules, h . tth ’ . o l
develop our theory based on a minimalistic, tight-bindingt"at the positions of these "crossing points” are spatially cor-

Hamiltonian for these conduction electrons on a chailNof relafced along the arclength of t_he ch.a.in due to chain cpnfor—
sites of the form mational free energy. Finally, in writing the full Hamilto-

nians Egs.(1)—(3) we have suppressed the spin degrees of

N2 freedom of the electrons. It is reasonable to assume that the
Ho=—t 2 ([OX€+1]+€+1)¢)), (1)  proposed interchain tunneling mechanism is independent of
(=-NI2 electron spin. Thus, we may later trivially account for these

where|¢) is a state vector for an electron on thih tight- spin (_jegrees of freedom by a muIt_ipIicative factor of 2 in the
binding site. In the absence of strong electron-electron cordensity of states of the electronic degrees of freedom. A
relations[6] such a single particle approach is justified andSimple pictorial representation of the basic problem for the
many properties of such conjugated polymers have been pr&éase of only one hopping site is shown in Fig. 1.
dicted via such simple tight-binding modds9]. The over- Because of the large separation of time scales between the
lap integralt is not precisely known for a number of these €lectronic and conformational degrees of freedom of the
systems, but recent spectroscopic results on chemically ré0lymer chain, we may ignore conformational changes in the
lated system$19] suggest that is on the order of 1-4 eV. polymer while discussing the modification of the electronic
To discuss the modification of the electronic states of thisStates due to the proximity of the two chains at a given point
tight-binding model due to the proximity of another such©r Set of points. To show that we may ignore the thermal
polymer at one point or a set of point§}, we modify Eq. ~ motion (_)f the point of closest approach in discussing _the
(1) by introducing another copy and including an interaction€lectronic structure of the molecules, we compare the time

term between the chains parametrized by a second hoppirRg@/€ for monomer motion over distances of a Bohr radius
matrix element’ (the distance over which one expedtsto vary rapidly

Tenain~ @yM/(kgT) to characteristic times for electronic
N o ] ] structure reorganization Tgjecron—f/t. We find  that
Ho==t 2 2 (16+LiXCil+[€iXC+ Ll (2 Ty of Tenan~ 10720 0 the adiabatic approximation is emi-
J=126=1 nently reasonable.
o L Similarly, we note that the temperature of the system
Hi=—t > (€,1)¢,2+[€,2)(¢,1)). (3)  (typically 300 K or lesyis significantly less than the Fermi
Cefe) temperature of the electronic system so in the remainder of
the calculation we will determine the total free energy of the
electronic degrees of the freedom in a zero temperature ap-

while_ the interaction Hamiltoniarhﬂ, allows for interchain proximation whereas we will consider the role of tempera-
hopping at a selected subset of sites along the polyfigr,  re and consequently entropy while discussing the confor-

We restrict the set of possible interchain tunneling junctionspaiional and translational degrees of freedom of the
to only those that allow tunneling betweequivalentsites — no|ymer. We now develop our calculation for the binding
on the two chains. In other words we do not admit tunnelingenergy of the two chains by computing separately the de-
matrix elements of the forn¢,1)(¢’,2| where¢#¢’'. The  crease in the energy of the electronic degrees of freedom due

In the above equations, the sum pis over the two chains,
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to interchain tunneling and increase in chain free energy due

to the loss of some translational and conformational entropy.
From the sum of these two effects, we determine the effec-
tive binding energy. First we consider a single crossing point %8
as shown in Fig. 1.

B —tan [k(m+1)]

0.6

A. Single crossing point 04

We take the single crossing point to lie in the middle of
both chaing¢,}={0} as shown in Fig. 1. We return to cross- o2
ing configurations of lower symmetry later. We note that the
interaction Hamiltonian Eq(3) can be diagonalized in the
basis of symmetrized and antisymmetrized chain occupation
states:

>z
0.5 1 L5 2 25 3

FIG. 2. Graphical solution of Eq11). Allowed k values lie at
the intersections of the solid line with the long daskgsnmetric
band and with the short dashéantisymmetric band The vertical
lines represent the unperturbkdalues.

€, )= =[|6, 1)+ [6,)], @
V2

so that in this basis Ed3) takes the form

Hi==t 3 (6 +X6+[=[6-Xe-11. 5) sM@zI%wWﬂ (10
tel{l}

o _ ) o which, with the boundary condition Ed7) leads to the
Itis immediately clear that the action of the Hamiltonian on gyantization condition

the subspaces of the antisymmetrized and symmetrized states
is identical except for the exchange tf—-t’. We discuss

the energies of states in both subspaces in parallel. The
Hamiltonian is also symmetric under the parity operator . . ) .
Pl¢, +)=|-¢, +); since only the states symmetric under The solutions of this transcendental equation that determine
will be affected by the crossing point, we focus on these evefe allowed wave vectork [and energies via Eq9)] are
parity states in the following. We make an ansatz for theShown graph_|cally as thg set of intersections in Fig. 2 where
unnormalized (ant)symmetrized, even parity eigenstates of the left and right hand sides of E(L1) are plotted.

sin(ka) = ;—’ttar{ka(m+ 1]. (11

the Hamiltonian by writing The principal consequence of the crossing point is the
creation of two localized bound states out of the
m symmetrized/antisymmetrized stafgs+). We examine the
[k, £)= >, codakl¢|+ ¢i)|€) (6)  symmetrized states first. The conditions on the tunneling ma-
f=—m trix elementt’ for the appearance of this bound state can be
where ¢ represents the wave-vector-dependent break in the’ ferred from Eq(11). If
phase of the wave function due to the interchain interaction It']
on chains ofN=2m+1 tight-binding sites. Boundary condi- 1< (m+1) (12
tions require that the amplitude of the wave function at sites
+(m+ 1) vanishes, which with Eq6) leads to then there is no solution for real wave vectées< 7/[2(m
+1)], but a new solution appears along the imaginary axis in
. 2p+1 _ C 2
ak(m+1) + ¢ = ( IZ; )’ pe Z. @) the complexk plane atk=i«, wherex is given by
. _ It
One can show that the statgs +) with arbitrary phasep; sinh(ax) = 2t tanfax(m+1)]. (13

satisfy the time-independent Schrédinger equation at all sites

away from the crossing point since, via direct calculation,From this relationship and E¢9), we determine the energy
one finds of the resulting bound state to be

Eﬁr(f?ﬁo,i'|k,‘_|'>=<€¢0,i'|H|k,'_|'>, (8) Eb=—2t\/1+%;tanr?[x(m+ 1] (14)

with wherek is the solution from Eq(13). From the magnitude of
Ef = - 2t cogak). 9 the imaginary wave vector, it is clear that this bound state is
localized on the length scale af/t’ ~10a. It is important to
However, to simultaneously satisfy this eigenvalue equatiomote that, due to the appearance of this bound state on any
at the crossing point as well we must choose the phase angtdain of reasonable length, the energy of the electronic de-
¢ such that grees of freedom is decreased by a quantity on the order of
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the tunneling matrix elemertt. In the limit of an infinite >//H\//\//\‘v
chain wherem— «, one sees from the above equations that N A f\ /\
axk~ (O(1) and tanli) in Eq. (14) becomes one in agreement — = T
with previous work[21]. This rearrangement of the elec- R Gt
tronic degrees of freedom has dramatic consequences for the @ M
polymer conformational dynamics as we show below. P

In addition to this lower-energy bound state, a second \/ >< I
localized state is pulled from the conduction band of anti- /\\ ;,,>< ><
symmetrized states. In this case——t’ as discussed below - T
Eq. (5). From Egs.(12) and(13) we now find that the com- —— T
plex wave vector associated with the bound state becomes (b) M., M, M.,
k=ix+/a; the bound state appears at the edge of the Bril-
louin zone and the energy of the state -t is interesting FIG. 3. Two polymers interacting at a series of localized sites. In

to note that the appearance of these two localized states @ upper figure the two chains form an ordered structure in which
energies E, is directly analogous to the appearance of@ crossing point appears after exachly tight-binding sites. The

bonding/anitbonding states in covalently bonded atf2a% lower figure represents the disordered version of the braid. Below
In the present case, however, we build these states out Sfach braid is a pictorial representation of the appropriate tight-

spatially extended conduction-band states rather than the |@_|nding Hamiltonian in which the filled circles represent the inter-
calized atomic orbitals chain tunneling sites. In the disordered two-chain braid, the number

There are still other consequences of interchain tunnelin ) ; : .
for the scattering states that remain in the conduction ban ut the sameM; sites exist on both chains between the crossing
oints.

In other words, all the even symmetry, extended states of the

unperturbed chains are shifted in energy due to their interac- since the dominant contribution to the electronic energy
tion with the crossing point at site zero. These scatteringhifts comes from a localized state at the crossing point, it is
states remain eXtended, i.e., retain a purely real wave Vect%erhaps not Surprising’ that, when the above analysis is gen-
but that wave vector ShiftS due to the interaction W|th theeranzed to the case Of a Crossing point at an arbitrary point
crossing point. Fort’=0 we trivially find these extended gajong the chain, the principal, qualitative result is unchanged.
states ak”'=m(2p+1)/(2N) for integerp. Due to scattering We will show below that this basic result is effectively in-
at the crossing point, these wave vectors shift so #at sensitive to interactions between such crossing points in
_>k(°)+Akp. These shifts can be computed by expandingchains that form a multicrossing-point “braid.” We do this in
both sides of Eq(11) neark'?. From this expansion we find two steps by first considering an ordered array of crossing
to leading order irt’ /N that points and then by examining a spatially disordered set of
crossing points; see Fig. 3

f sites between crossing points varies along the chaihs; M;,

-t t" cosk 1
Aky=—| 1+ ——E> + O(—) 15 B. Ordered array of crossing points
P~ 2tN'sin kp< ansitk,) O\ 1 ’ 9P

One may wonder about the effect of a multiple set of

Using the above shifts ik,, we can compute using E¢9) interc_hain c_rossings. Specifically, if, as appears above, one
the sum of the shifts in the energy levels of these scatterin§f0SSing point decreases the overall energy of the electronic
states in the symmetrized band. Recalling that we need tgtates of the system, is it more profitable for the chains to
also include the analogous shifts in the chain antisymmefOrm many such crossing points, and if so, at what density?

trized band, which eliminates terms oddtin we find that 10 address this question, we first consider the simplest such
the total shift is structure—an ordered array of crossing points at ewétly

site along the chains. The ordered structure forms, in effect, a

v o(my) K superlattice in which the unit cell is constructed from one
AE=—(—) > L'SP_' (16) crossing point and a basis ® -1 tight-binding sites be-
N/ pop 2t sir? Kp tween consecutive crossing points. Qualitatively, one expects

the localized states centered at each crossing point to merge
where the sum is over all filled energy levels from the bot-into an impurity band in the lattice. We explore this point
tom of the conduction band toy set by the Fermi level of below paying particular attention to the interchain binding
the system. Since the sum of all such energy shifts of thenergy per unit length of the polymers.
extended states vanishes in the limit of lafges 1N, the To begin we note that within a single supercell of the
change in the energy of the scattering states in the band is netiperlattice, the tight-binding Hamiltonian becomes
significant for long chains. Hereafter we will ignore the finite M-1
length[O(1/N)] correction. The principal result is that there |, _ —t {16,n)€ + 10| + € + 1,n)€,n[} + \|M,n)(M, |
is an attractive interchain interaction due to a reorganization " =1 ' o ' ’
of the electronic degrees of freedom of the system. The en-

: ) . O (a7

ergetically dominant part of this reorganization is the appear-
ance of the “bonding” bound state which lowers the elecawhere the statéf,n) is a position eigenstate representing an
tronic energy essentially bty?/t. electron at the'th site in thenth supercell. Due to the inter-
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FIG. 4. The density of states as a function of energy for an
ordered array of crossing pointsolid line) and a disordered array FIG. 5. Plot of the change in electron energy as a function of
of crossing pointgdashed ling In both cases the density of binding linker density for cases of quenched, disordered positishsrt
sites isp=1/M=0.125 and\/(2t)=-0.25. dashes and ordered position&solid line). By assuming the inde-

pendence of the binding sites so that each linker contributes 4
- 2,412\1/2 H i i H
chain tunneling at théth site in each supercell, there is a th(4tb'+td') » one a”'vefs att‘.'j‘ reafsonablti Ilu(ngar e_xpprc:jxnmr?tlon o
localized potential for the electron to reside there. In the € .'n INg energy as a Iunction of cross-in ensityg das g)s

. - L . Inset: Plot of the change in energy for an ordered lattice vs
above equation and in what follows we find it convenient to . -
. - . . 1/density. Both plots usk/2t=0.25.
suppress the % notation describing the interchain symme-

trized and antisymmetrized states. We have seen above in Eg. ) )
(5) that the only difference in the form of the Hamiltonian degrees of freedom that index the supercetind the site
acting on these two subspaces of opposite chain-exchandéthin each supercelf by writing unnormalized states

symmetry is the shift’—-t’. In the above equation, that NM M
t’-dependent term in the Hamiltonian is given in terms\of Ky = gldaMn gkl ¢ A - gmikalylp 20
which takes on the valu¢'(-t’) for the antisymmetrized k) EE ( Aax e, (20

(symmetrizegl states. To complete our superlattice Hamil- _ _
tonian, we include a simple tunneling term to couple thewhere Ay, will be determined below an®l/M counts the

states in each supercell. Here, as before, we assume that thember of supercells on the chain. The allowed valueg of
presence of the crossing chain does not affect the intrachaie fixed by the periodic boundary conditions to he
hopping matrix element, although such effects could be=27n/Na where n is an integer such that N/2M<n

taken into account using the present tight-binding formalism=<N/2M. We now insist that these states, which are eigen-
states of the supercell translation operator are also energy

The coupling term is | |
, eigenstatest|q,k)=E(q,k)|g, k). This relation can be trans-

Hn= - t{IM,m{L,n+ 1/ +|1,n+ L(M,nf}. (18) lated into three related equations formed by projecting the

The first term in the above equation couples the crossingbove relation onto three carefully chosen states. We require

point site in thenth supercell to the tight-binding site to its that
right [in the (n+1)th supercell with the usual intrachain

hopping matrix element, while the second term allows for (€,AH|a,k) = E(q,K)(¢, g, k), (21
electron hopping from the first site in tlfa+1)th supercell
onto the crossing point site to its immediate left that is part 1.7H|a,k) = E(q,k){(1.n[q,k), 29
of the nth supercell. The full Hamiltonian of the system is (L.nH|q.K) = E(@ LN,k (22
simply the sum of these two terms summed oveiNadluper-
cells: (M,n[H|q,k) = E(q,k}(M,n[q,k), (23)
_ " , where( # 1,M and the index of the supercedlis arbitrary.
H‘%(HnJan)’ (19) The first condition determines the energy values to be
" E(q,k)=—2t cogka). Note that since condition Eq21) ap-

where we have used periodic boundary conditions so that thglies to the interior of each supercell, the energy eigenvalues
(N/M+1)th supercell is identified with the first supercell. appear to be independent@find\. This apparent lack o
Since the principal effect of the interchain tunneling on theand A dependence is false, as we will soon be forced to
energetics of the system has been shown to be the appeaequire that the allowed values kfdepend on these param-
ance of localized bound states for a single crossing point, theters. The second and third conditions above acknowledge
net effect of periodic boundary conditions used here is minithe special role of the crossing point in the Hamiltonian.
mal. From the second condition, we determine the paranfgier

In order to diagonalize the Hamiltonian given by E9), In order to satisfy the eigenvalue equation at the leftmost site
we introduce two wave vectors conjugate to the real-spaci# a supercell, we find
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glkaM-0) _ 1 g(E)=aN/JE where is the total number of energy eigen-

Aqk= 1 — gritkaM+a) * (24 states with energy less th&n Using the density we compute
the total energy of the electronic degrees of freedom of the

In the above result we have used the energy eigenvaludwaided polymers. The density of states can be written as
obtained from enforcing the first condition. Finally, the com-

bination of the third condition Eq23) along with the energy g(E) = ﬂ(#) _ (26)
eigenvalue used above leads to a relation betwkegnandx dk \ dE/9k
of the form

The second derivative in the product above is computed

trivially from the dispersion relation. Using the quantization
}sin(ka). (25) of the wave vecton, the first derivative can be expressed as
N _oNandq_NMadq
ok onaqok 2w Ik

~ cogqMa)

A
Ettar(kMa) =- {1 coskMa)

The above equation may be read as an implicit form of the (27)
relation ofk uponq and\, i.e., k=k(g,\). Note that in the
limit of a very sparse array of crossing points, i®l;—%,  where the first term in the product reflects the fact that for
we recover the condition on imaginaky for the isolated each wave vectog=q,=2#n/(Na) there areM allowed val-
bound state given in Eq(13). However, asM becomes ues ofk, one for each of théVl bands in the system. The
smaller, we find a small modification in this condition and second term in the above product expresses the
the introduction of a lattice momentufq) dependence ik.  g-quantization condition; this leaves only the last term to be
We now turn to the calculation of the density of statescomputed from Eq(25). This derivative is given by

99 _ (M2t)[- M cogkaM) + sin(kaM)cogka)/sirf(ka)] + M sin(kaM)
ok M1 - [(\/2t)sin(kaM)csdka) + cogkaM) 2 '

(28)

Now, the total energy of the electronic states of the chaind, a band gap will open &-=0 resulting in an additional

can be computed from Eg&26), (27), and(28). reduction in the energy. In practice, we expect that the Fermi
One expects from the calculation of the isolated crossindevel of doped polymers will not lie at a place of such high

point that the change in electronic energy is almost entirely\symmetry and the dominant contribution to the energy will

due to the creation of a narrow band of bonding states belowe the creation of localized bound states.

the conduction band so it is reasonable to imagine that the The principal result of this calculation is that, due to the

total change in electronic energy is independent of the Fermhighly localized nature of the bonding states at each crossing

level. For convenience we choose the Fermi level taEpe  point, the total interchain binding energy is essentially a lin-

=0. Since there is at most one energy eigenstate for eadar function of the crossing point density. In other words the

(complex value ofk, we may write the total energy of the attractive interaction at each crossing point is highly inde-

electronic system as an integral okeuf the density of states pendent of the local density of such crossing points at least

and the dispersion relation. All possible states below theauntil M decreases to order unity.

Fermi level are explored by integrating along the following , ) )

contour in the complex plan&=(-io,0) U (0,7/2) which C. Disordered array of crossing points

is the combination of the negative imaginary axis and the As a final point regarding the electronic contribution to

segment of the real axis spanning 07¢2. The density of the interchain adhesion, we now allow the set of crossing

states along this contour is shown in Fig. 4 as a function of

energy. Lastly, using Eq25) we note that for there to be an 0
energy eigenstate with a giveig,k), it must be true that —0.001
[N/(2t)sin(Mak)csdak) +cogkaM)| <1 so that the denomi- E
nator of Eq.(28) must be real. To enforce this condition over 20 ~0.002(_ (dered
thek integration we take the real part of the integral to write —0.003}— Single State
0 0.1 0.2
E=Re f %[E(k)dk. (29) A2t
¢ ok

FIG. 6. Plot of the change in electron energy as a function of the
The change in the total electronic energy as a function ofnteraction strength for random disordéshort dashes perfectly
t" andM can then be computed; these results are shown iBrdered potentialsolid line), and under the independent-linker as-
Figs. 5 and 6. The observed even-odd effect in Fig. 5 is asumption where each cross link contributéd-44t2+t'2%2 (long
artifact of our choice of the Fermi level. For chains with evendashes Here the cross-link density is 0.1.
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points to become disordered in a specific manner as shown in 1
the lower part of Fig. 3. We allow the number of tight- g(E):—;ImE (€|G[€) (34
binding sites between two crossing poiiitd) now to vary ¢
along the chain in an uncorrelated manner so that the chainghere the sum is over a complete set of states. To approxi-
may be described by a sequences of such spacingsate this sum accurately, we follow the work of Soy&a]
M,M1,M;,...,M,. We note as we did after E¢3) that we and first reorganize the perturbation series given in (B8
restrict the form of the randomness to cases in which théy introducing theT operator representing the Born series for
samesequence can be used to describe both chains. Theattering off a particular sité,
advantage of this restriction is that the interchain interaction
part of the Hamiltonian is still diagonal in the basis of chain T =€) (80— v)(€| + (¢~ 0) 2 OXC|G[ )] + -
symmetrized/antisymmetrized wave functions. 1

When considering the chain-symmetrized/ = 1—(€|Gyl €) (e, -
antisymmetrized subspaces individually, the Hamiltonian {£GolO)(e¢ = 0)
given by Egs.(2) and(3) is identical to the two-component so that Eq(33) implies
random lattice problem, which has been extensively studied o
[23-26. For completeness we recapitulate the discussion of (€'|Gl€) = (£'|Gy|€) + 2 €' Go|€) T €| Gyl €)

Xl (35

the general formalism of the coherent potential approxima- a
tion (CPA) developed therein while applying that formalism _
to the system at hand. We begin by expanding the propagator +> <€’|Go|?>TZ(?|GOI?>Tf<?|GO|€> .
of the full, disordered systei@ in terms of the propagator of -
a uniform systemG, with a fixed and as yet unspecified t#e
on-site potential. The propagator for the uniform system is (36)
given by ) _ _
The successive terms in the above equation represent the
1 propagator of the electron in the uniform system followed by
Go= E_H (300  a correction due to the interaction of that electron with the
0

scattering potential at sitE followed in turn by the interac-

where tion of that electron with siteé and<¢; the higher-order terms
(not shown abovehave an analogous interpretation. It is
N N important to note that, due to the reorganization the pertur-
Ho= _ ([€ + 2)(€] + [€)(€ + 1]) +v, lexe|  (31) bation series in terms of th& operators, the effect of the
=1 =1 electron interacting with theamesite successively has been
already taken into account. Thus, in the sums representing
andv is the spatially independent on-site energy. The fullthe second- and higher-order terms it is necessary to restrict
Hamiltonian of the disordered system is given by the sum othe summation to avoid revisiting the same site twice in a

H, from Eq.(31) and scattering potentials at each site givenrOW e.g. 7+ ¢ in the second-order term above.

by We now choose the heretofore arbitrary on-site potential.
N One might imagine that it would be reasonable to choose that
potential simply to be the mean of the on-site energies of the
H=2 (e = v)[EXE]. (32) disordered system by taking=p\; however, we are not at-
=t tempting to average the Hamiltonian over the disorder but
. L rather we will be averaging the propagator. Thus, using the
In the above equation, the random variabjéntroduces the  cpa approach, we choose that on-site potential to enhance
quenched disorder by introducing uncorrelated tunnelingy,, convergence of the perturbation seriesGagiven in Eq.
sites with densityp along the chain. This random variable (36) by takingv such that the average of tieoperator over

takes the valuex with probability p and is zero otherwise o quenched disorder vanishes. Representing the disorder
where, as before) is +t’ for the chain-antisymmetrized/ averages by-], we choose such that

symmetrized Hamiltonian.
One can show in the usual way that the propagator for the -v N—v
full, random systemG can be expressed perturbatively in [(€[Td€)]=(1-p) +p— =0
: o 1+v{|Gol€) 1=\ —v){{|Gy|€)
terms of the tunneling Hamiltoniald, and propagator of the
uniform system so that (37)

Now, the reorganized perturbation series in E86) is
greatly simplified. Sinc(¢|T,|¢)]=0 andT operators at dif-
ferent sites are uncorrelated, [(¢|T/|€){(€'| Ty |€")]
=[(€| T 01X [(€'[Te|€")]=0, we see that first correction to
Our goal, as before, is to compute the density of states of th€, is fourth order in theT operators. In the limit of weak
systemg(E), which is given in terms of the propagator as scattering[ G]= G, (with the advantageous choice fodis-

1
G:ﬁ:Go+GoH|Go+"'. (33)
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cussed aboyemakes an excellent approximation since the —  tx cogka)

first correction is of _orde[p)\/ (Zt)_]“. _ ~ at%siré(ka) + N2’ (44
Finding the density of states in the disordered system re-

quires that we evaluate the trace of the disorder-averagethis shift is odd in the impurity strength; therefore the

propagatofEq. (34)] as a function ofu; we do this in the change in the density of states from the symmetric and anti-

position representation by writing the propagator in the unisymmetric bands will exactly cancel. Therefore, the reorga-

form system as nization of electronic energy must occur where this argument
ala ika(f-n) breaks down, namely, when the separation between binding
a e . . .
<f|Go|m>=Go(f.m;E):—J d sites is comparable to the wavelength, i.e., wher(ksin
2w ) s E-v+2tcodka) = 0. At this region near the band edges states are removed to

(39) form the imaginary wave number impurity states.
The role of the impurity band as the source of the binding
and extracting the diagonal element energy is further supported by the “single state” or indepen-
oy N2 172 dent binding site approximatiofiong dashesline in Figs. 5
Gol(£,£:B) = £{(E-v)"-4) (39 and 6. This line is the binding energy that would be obtained
where the sign above is determined by whether the magnif the sole effect of adding a binding site were to move a
tude of (E-v)/2t+[(E-v)/2t-1]"2 is greater or smaller single electron from the bottom of the bafi=-2t) to the
than unity. In the uniform system the sum on position eigenenergy of the isolated bound stdtg,=—(4t?>+t'?)1/?]. This
states is trivial as seen by tHeindependence of the right line is an excellent approximation for the binding energy of
hand side of the above equation. However, determinindpoth the ordered lattice of binding sitésolid line) and the
Go(¢,€;E) andv simultaneously requires that we solve two random array of binding siteshort dashesThis supports
polynomial equations given by Eq&7) and(39). the suggestion that the creation of the impurity band is the
The binding energy is determined by integrating BBf)  dominant effect in the reorganization of electronic energy.
over the filled states. For convenience, we chose the Fermi
level to again lie aE=0. The results are shown in Figs. 5
and 6. As with the ordered lattice of binding sites, we find ) ) ) _
that the binding energy of the disordered braided chains is If the chains adopt a parallel _conflguratlon, then ther_e W|II_
very nearly a linear function of the density of sites. be an overlap between each site and the corresponding site
We can conclude that the primary effect of introducing©" the opposite chalrj. Thl§ interaction is ea§|Iy Q|agonal|zed
binding points between the polymers is the creation of imWith the transformation given by Ed4). This yields the
purity bands centered at the energy given by Bd). The  dispersion relation
states in the impurity bands are created at the expense of _ ,
states near the band edgEgs; +2t. However, the density of E.(k)=- 2 cosk+t'. (45)
states far from the band edges is essentially unchanged. This We can solve for the binding energy of the polymers in
can be easily proved for a random arrangement of the impuhis zipped configuration if the polymers are lightly dogad
rities. We first note that the density of states is given by  general solution for the zipped configuration eigenstates may
1.9% be found in Appendix A We assume that each polymer is

D. Parallel configurations

g(E)=—— (40) doped withN&/2 electrons wher®\ is the number of tight-

™ JE binding sites on each chain. 8 1, then prior to zipping, all

these electrons will have energy very neat aPthe bottom

1 0k EY) of the band. When the polymers bind over the lengthmof
:7—7 JE + ND& , (41) monomers, then states are created with enErgy-2t with a

density of statesr®4t?>— (E+t')?]"Y?/ 7 where the extra fac-
where® is the phase of the wave function at the last site ontor of 2 accounts for the spin degeneracy. The electrons in
the chainyp is the density of impurities, andis the average these states have lowered their energy by

phase shift as the wave function passes through an impurity.

For an impurity\ at the origin(€=0), the wave function AE:_Z_thz_(_ 2+t')2 - 2—m(2t—t’)
takes the form ™ ™

=3 coskla+ ¢ + A coskla+ b+ 0)l), (42) s S -1) 7| (@6

1<0 1>0 2t 2
whereA is an amplitude to be determined. The phase shift isrhjs corresponds to a binding energy ef4t'32/3mt per
given by site.
If the chains zip past a critical number of monomeis
02tan_1<tar(¢)_tsin(ka)>_d) (43)  =6m/2cos(t’/2t—1) then all the electrons have energy

<-2t. These electrons now have imaginary wave numbers in
Averaging over the incident phase, we find the average the unzipped region of the chain; therefore the unzipped re-
phase shift gions will no longer be metallic. The binding energy is now
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am _ [ Néw interchain binding energyF,,, which is a combination of
AE:—7sm<—) — N8t + 2tNS, (47)  electrostatic chain repulsion and chain binding due to the
proposed tunneling mechanism. We do not include van der
where 6N is the total number of dopant electrons comingWaals interactions between chains. This longer-ranged at-
from both polymers. Since the derivative of this binding en-tractive interaction is generically stronger for the conducting
ergy with respect to the length of the binding region) is  polymers since the extended electronic states enhance their
negative, we note that the electrons exert an effective presew-frequency polarizability. At higher frequencies one ex-
sure to increase the size of the zipped red®f. When they pects that the polarizability at higher frequencies is typical of
form, we expect the length of the zipped regions to be lim-small organic molecules since the dielectric spectrum at
ited only by the number of conduction electrons. higher frequencies is primarily due to localized molecular
The binding energy per binding site in a zipped region isstates that are similar to all hydrocarbons. Such van der
~t'32t12 whereas in the braided configurations the bindingWaals interactions lead to a longer-range attraction which, in
sites reduce the energy byt'?t™%. The zipped configuration high salt concentrations at least, are a subdominant correc-
exhibits stronger binding per site byt/t’; since generically tion to the interchain binding potential when the interchain
t’' <t, the electronic degrees of freedom favor zipped condistance is on the order of angstroms. In addition the en-
figurations of the chains over braided ones. To determindancement of the van der Waals interaction is significant for
whether a pair of chains will, however, form such zippedonly the metallic rather than the semiconducting state of the
regions or the random braids, we must consider the energgpolymers. Thus we expect the interchain tunneling mecha-
ics associated with the conformational degrees of freedom afism discussed in this article to dominate the binding energy

these charged polymers in water. of the observed bundles. We examine this point further in
Appendix B.
The binding free energy of two chains referred to in Eq.
lll. CONFORMATIONAL DEGREES OF FREEDOM OF (48) is a combination of the electrostatic interaction of the
THE CHAINS AND EQUILIBRIUM STRUCTURES chains, the bending of the molecules on scales short com-

OI[i)ared to their persistence length, the random walk entropy of
the combination of the binding energy due to the electroniéoopS Ia_rge_r than their own persistence "?”gth’ and the elec-
Hgenic binding energy of the tunneling sites. Based on the

degrees of freedom and the change in the translational a iition bet h tracti d lsive int
conformation free energy of the polymer. From the interplayComloe lion between these aftraclive and repulsive interac-

of these two contributions to the total free energy, we exploré!ons' the pairs of Cha'f‘s can adopt a variety of Conf'gu"’?'
tions. For polymers of high linear charge density we expect it

%0 be possible to form “loosely” braided states in which

oops of the chains between consecutive binding sites are
égnger than a persistence length. Moving to lower charge
densities, these loosely braided structures will become

The equilibrium state of aggregating polymers depends

and discuss their equilibrium structure. We compare the fre
energies ofi) isolated chains in solutiottii) braided pairs of

chains consisting of unbound loops between isolated cros
ing points, and(iii) parallel or “zipped” configurations in > ="~> “© .
which the chains have numerous consecutive tunneling site§Ight braids in which the unbound loops are smaller than a

along their length. The aggregation of DNA in the presencé:’erSi§tence length. .Finally, at even lower pharge densities
of divalent ions has been approached in a similar manne?"€ finds pa_lrallel Z|ppe_d states of the chains.
We consider only high-salt solvents where the Debye

[28,29; however, in the present system there is no quantit th i h ller than th ot lenath. Und

analogous to the fixed concentration of linking divalent ions €NYtN 1S much smaller than the persistence length. Under

since the interchain binding sites are created spontaneous Fh conditions the mterchal_n elect.rostatlc repulsion is sig-
ificant only near the crossing points. There the charged

at chain intersections. ! .
chains can be treated as crossed straight rods. If two charged

We begin by considering the chains of lendtlrNa, ; ;
wherea; is the distance between tight-binding sites that alsd ods cross at an anglﬁewrgh a distance of closest approagh
the electrostatic energy is

carry a net linear charge density in solution equa/ta.. We
study the coexistence of free and paired chains in solution by i
writing the free energy of the solution in terms of a total clectio= %
concentration of chaine and concentration of bound-chain Kkagsin 0
pairsn, [30]. This free energy takes the form

F(ny)
KeT

(49)

e wherelg=€?/ekgT is the Bjerrum lengtha, is the avm;:]age
_ b separation between charges along the backbonexants
= (n=2ny)[In(n =2ny) = 1] + (i, = 1) + nszT. the Debye screening length.
(49) We first consider the possibility of loose braids in which
the free energy of the polymer loops between tunneling sites
In the above expressiafy, is the free energy of the bound is dominated by their random walk entropic contribution
states of the chain excluding the translational entropy. Theather than the enthalpic contribution arising from the me-
first two terms of Eq(48) represent the translational entropy chanical bending modulus of the polymer. Loose braids must
of the isolated chains and bound pairs, respectively. therefore be larger than a persistence length. The free energy
Minimizing Eq. (48), we find that the concentration of of two loosely braided chains such that there is a ledgtti
dimers isnexd (F,)/kgT]. It remains now to calculate the free polymer between tunneling sites can be written as
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- D I static repulsion at the cross links and the bending energy of

2t ! . ,
the chains between those cross links, respectively. In the

(50 tightly braided state these terms are more than offset by the
WhereD:ZkaﬂBe—Kd/Kag is the electrostatic repulsion of energy_reducti(_)n due to the formation of binding poir_1ts
the chains at the tunneling site. In the above equation the fir§hoWn in the third term. Here we have neglected the configu-
term is the binding energy of a tunneling site that is ther@tional entropy of the loops of chain making up the tight
combination of the binding energy coming from the conduc-Praid. There remains, however_, the conﬁgurguonal entropy of
tion electrons and the electrostatic repulsion of two charged’® random walk of loops making up the braid. Thus the free
chains in close proximity. The strong repulsion forces the®N€rgy of the tightly braided chains can be written as
two chains to cross at right angles; this crossing configura- L
tion is taken into account above. The final two terms repre- FrB(0) = EB(€) - kgT—,
sent the asymptotic form of the entropic contribution of the ¢
polymer between binding sites in the limit of large loops.where¢ is the length of polymer in one loop of the braid.

The constana is of order unity. The entropy reduction of the Minimizing Eq. (53) with respect tof, we find that the free
self-avoiding chain of length 2due to the loop formation energy becomes

results in the last term; calculations suggest that the constant
c is also of order unity31,32. Upon minimization of the
above free energy with respect fpthe size of the loops in

ke T€pm°
the loose braid, we find that is driven to arbitrarily small Wi he zipped p . f the chains. T
values when the binding energy is negative and to infinity e now turn to the zipped configuration of the chains. To
when that binding energy is positivee., net repulsive inter- consider the electrostatic interaction between the two chains

actions at the tunneling sitesThus loose braids are not a n-a parallel conﬂguranon, we note tha_t the potentIa]a .
thermodynamically stable phase of the polymers. Should redistancer away from a thin charged rod in a salt solution is
duction in energy due to the interchain tunneling mechanisn@Ve" Py

overcome the screened electrostatic repulsion of the chains 2lgksT
and the entropy cost of forming a single loop, the chains will D(r) =
bind densely along their length until the bending energy of

the polymers becomes the limiting factor. At this point onewhereK, is a modified Bessel function. The energy of two
enters the regime of tight braids where the bending energy giolymers separated by a distarc@and bound over a length
the chains dominates the entropic contribution to the free.* is found from the combination of the electrostatic repul-
energy considered above for loose braids. Our result differsion of the chains in close proximitidistanced) given by
from the studies of Borukhoet al.[28,29 of polyelectrolyte  the above equation and the binding energy due to the tunnel-
aggregation mediated by divalent ions is that the number oihg mechanism given by Ed47). Including the chain en-
binding sites for the conjugated polymers is not conservediropy of the remaining free sections of total lengtkL 2
Loose braids continue to create new binding sites until the-L*) we find the binding free energy to be

braid loop approaches a single persistence length. In order to L* . L*

study these tight braids we turn to the calculation of chain ]_-glngf)lp( ) _ 2kBT—(1 _2_) (56)

L t'2 £ 2¢ two terms represent the energy cost associated with electro-
;EB:Z{_( )—kBT{Z—A—cIn< )H b >

p p

(53

(D —kgT —t'%/2t)?

FpP=- (54)

Ko(xr), (55

bending energy. o
The bending energy of a polymer is where the binding energy term is given by
LA S K
L L ma, \L*/L a, t/
wherel,, is the persistence length, aRd) is the local radius (57)

of curvature. When the separation between binding points is

comparable to the persistence length we say that the chaimedC=2lgksTKq(xd)/a2. For stiff chaing(l,>a,) so that we
adopt a tight braid configuration in which the bending energymay neglect the entropic contributions above, the quahtity
of the chain dominates its random walk entropy over eaclappearing in Eq(56) is simply determined by minimizing
unbound loop. Furthermore, in the limkt*< ¢, the crossing  that equation with respect 10", which yields

angle will be very close tar/2 and the polymer conforma- A\ 3 Fr?

tion between binding points will be well approximated by the (';) i

arc of a circle. Thus for tightly braided configurations we

write the energy per length of the polymers as

(58)

L/~ 3a(C+kgTlty)

One may imagine that the bound region of total length

B L keT€pm  t'2 will break up into a number of fragments along the chain.

& (0) = 7 D : (52)  Simulations of polyelectrolytes bound by divalent idi2g]
suggest that the division of the bound region into numerous

where( is the arclength of the polymer between intersectionssmaller regions results in an increase in the total free energy

and the electrostatic repulsidh is defined above. The first due to the reduced entropy of the free chain segments. The

4¢ 2t
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a third axis to the figure, but, as discussed below, the effect

e of varying the doping of the conduction band can be sub-

free PP sumed into a trivial shift of the figure. In the upper right
oL chains \ J portion of the figure the chains are both stiff and have a high
7 N charge density relative to their density of potential binding

.\f sites. Thus, although a pair of chains may form a single
bond, in the thermodynamic limit the density of binding sites
is zero. Generally, moving down and to the right in the dia-
gram induces intermolecular binding due the mechanism pre-
sented in this work. The equilibrium bound configurations

FIG. 7. Schematic phase diagram for two charged, conductingake the form of parallel, tightly bound pairs, which we de-
polymers. This diagram is spanned on the vertical axis by the pemote as zipped chains or as less densely bound braids.
sistence length scaled by the total contour length of the chain while  The onset of braiding is determined by setting the contour
the horizontal axis is the dimensionless ratio of the the distancgength between binding sites equal to the total contour length

between charges along the chainto the distance between poten- of the chain,L. This gives the free-chain/braid boundary as
tial tunneling sites. In the upper left region of the figure, chains of

high charge density and long persistence length are unbound in ﬁE_ 2 ﬁ 27-rkBT€pe'Kd
solution (free); upon reducing the linear charge density along the L kBT7T2 2t - Kag :
chain and moving to the right in the diagram the chains generically
become bound in a parallel or zipped configuration. For flexibleThe term in parentheses on the right hand side of the above
enough chains of intermediate charge density, however, more loosequation is collectively the effective binding of one inter-
braided configurations are predicted. chain crossing. The first part of that term is the binding en-
ergy due to the reorganization of the electronic states of the
electron degeneracy pressure in the bound regions furthgolymers while the second term represents the reduction in
enhances the aggregation of the bound segments. binding energy associated with the electrostatic interaction of
Based on these considerations we propose a schematite two chains. For the cases of current interest in which a
phase diagram for charged, conducting polymers in solutiorsingle interchain bond is favorable the right hand side of Eq.
This diagram(shown in Fig. 7, which represents the range (59) is positive.
of phase behavior of these polymers, is spanned by the per- To explore the boundary between zipped and braided
sistence length and thésuitably scalepl inverse, linear states of the polymers we compare the energy of the braided
charge density of the chains. This inverse charge density isonfiguration given by Eq(54) to the energy of the zipped
measured in terms of the ratio of the distarsgebetween configuration given by E(60). For the case of lightly doped
charged groups along the polymer backbone divided by thehains so that contour length of the zipped regibrisis
distance between potential tunneling sigs)mplicit in this ~ smaller than that of the whole polymer, one finds that the
diagram is an assumed level of doping of the conductiorboundary between braided and zipped chain configurations
band of the polymers. In principle the doping level demandoccurs where

braided

agla

(59

& _ (t'%/2t + kg T — 27k T 6% ka?)? - 2(kgTm)%(1 - L*/2L) (60
L L*ke T4t 3% 2mat? - 2€ ke TKo(xd)ag’]
[
This phase boundary continues to sma#lgha; until it inter- ﬁe _ 2L1g 4L [Léw
sects the free/braid boundary discussed above. There it ter- Lo 2 Ko(kd) + TrathTS'” L*
minates. Sinc&* <L, the primary effect of the doping level ) )
of the chain appears here as the prefatdy which simply + L% (t' - 2t) (61)
shifts the vertical position of the boundary between zipped L*kgTa '

and braided configurations in the phase diagram. The baSLFhis expression gives a line with a large negative slope that

s.tructure of the (.j'agram is, however, unaffected by the Pl eflects the fact that short persistence lengths favor the free
cise level of chain doping.

. . . . . chains due to increased conformational entropy in the un-
Finally, we find the line separating the free chains from Py

: ) ; bound state.
the zipped chains by subtracting the free energy of two free ound state

chains, XgTL/€,, from Eq. (56) and setting the resulting IV. DISCUSSION
expression equal to zero. The resulting boundary is described

by the equation We find that conducting polymers in the metallic state,

i.e., where the Fermi level lies within a band, will generically
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the formation of localized bound states at these crossing

points and the consequent reduction of the electronic energy APPENDIX A: ZIPPED CONFIGURATION STATES

more than compensates for the reduction of chain configura- Here we solve for the eigenstates for two chains that are

tional entropy due to the creation of the cross links betweegipped together over a portion of their length. The Hamil-
the two polymers. It is interesting to note that these localizedgnian is

bound states are the direct analogs of the standard binding
and antibinding orbitals that are created out of atomic elec- B
tronic states upon the close approach of their respective nu- Ho= _tgl ([€+ 10e[ + e+ 1) + 52—11 ule)€l (AD)
clei. In the case of conducting polymers, however, these lo- h -
calized bound states are created out of the extended stateswdfierev;=0 in the unzipped regionfl <l=<n andn+m+1
the metallic molecules. <I|=<N) and v;=\ in the zipped regionn+1<I<n+m).
The localized nature of these states has the consequenkkere A= ¥ t’ for the symmetriqantisymmetri¢ statesm is
that the binding energy is very nearly linear in the density ofthe number of sites in the zipped region, am¢@n’) is the
binding sites when these sites are separated by at least a fewmber of sites in the unzipped region to the Igftjht) of
monomers as they are in all braided configurations. Howthe zipped region. The chains have a total lengttiNefn
ever, when the polymers lie in parallel, zipped configura-+m+n’. The eigenfunctions are of the form
tions, the resulting binding energy per site is stronger than
the isolated binding sites b@((t/t’)*?). The equilibrium
structures formed by these polymers will depend not only on
the interchain binding mechanism, but also on the linear
charge density of the polymers, solvent screening, and the
persistence length of the polymer. The combination of these
factors will determine whether the polymers form loosely
braided structures, or tight bundles. whereA and B are undetermined amplitudes, andt e@sk
Based on these considerations we have proposed a sche-2t cosk’ +\. The boundary conditions are
matic phase diagram showing the expected equilibrium . o ,
structures that may be observed in such systems. For large sinl(n+ k] =Asin(n+ 1)k’ + 4],
enough linear charge density, one finds that the lowest-
energy state of the aggregate is a braid consisting of loops of
unbound polymer between cross-linking binding sites. For
smaller linear charge density one finds that the energetically
favorable configuration is two parallel chains where the in-

N-1 N-1

n+m

lky = sin(Ik)|1) + A >, sin(Ik’ + ¢)|I)
1=1

I=n+1
N
+B X sin(lk+ g)|l), (A2)

l=n+m+1

sin(nk) = Asin(nk’ + ¢)

AsinM(n+m+ 1)k’ + ¢]=BsinM(n+m+ L)k + 6],

terchain distance remains on the order of a few angstroms all Asin(n+mk’ + ¢]=Bsin(n+mk+ 6],
along their arclength. _
Clearly, the direct experimental observation of such struc- (N+Dk+0=jm, (A3)

tures is difficult. We note that small-angle neutron scatteringNherej is an integer. After some algebra, we find two equa-
experiments[15,17] are consistent with the formation of tions fork and ¢: '

bundles in aqueous solutions, but the spatial resolution of

these experiments is not fine enough to distinguish between sinkn’)  _sinfk'(n+m+1) + ¢] (Ad)
the braid and parallel phases discussed above. Moreover, the sifk(n’ +1)] " sinfk'(n+m) +¢] '

current calculations are not directly applicable to these ex-

periments since previous experimental studies focused on cot(kn)sin(k) =
semiconducting polymers. Nevertheless, our proposed bind- cotk'n+ ¢) = T osnk) (A5)

ing mechanism mediated by the reorganization of the elec-

tronic degrees of freedom is also relevant to the semiconFrom these equations we find the quantization condition for
ducting cas€[33]. Since it will likely remain difficult to Kk,
quantitatively test the detailed structure of the aggregate one , N, , 2
must directly probe the electronic states by studying the & + £+ ¢sink)colk' (m+ )] - si'(k’) =0, (A6)
spectroscopic signature of the molecules as they aggregatevhere

£ = sin(k)cot(nk) — \,
ACKNOWLEDGMENTS

! — oi 2 _
The authors would like to thank F. Pincus, G. Bazan, and ¢ = sin(kjcot(n’k) ~x. (A7)
A. J. Heeger for stimulating conversations. J.D.S. would alsd-rom these conditiongEqgs. (A6) and (A7)] and the disper-
like to thank D. Scalapino and L. Balents for helpful discus-sion relation

051802-12



INTERMOLECULAR ADHESION IN CONDUCTING POLYMERS PHYSICAL REVIEW F1, 051802(2005

Ey= - 2t cogk), A8 I3
‘ (3 (A8) oo ©2)
. . In(l/a)
one obtains the energy eigenvalues.
and perpendicular to the polymer it is
APPENDIX B: INTERMOLECULAR VAN DER WAALS a, = 2|p. (B3)

ATTRACTION So, the interaction energy for parallel and perpendicular

The van der Waals interaction energy between two likd®©lymers is

molecules in a screened medium is given by |6gm2r

_ Pk
220 = tind o
Q,
EVdW = —| 2277 (Bl) |2a4e—2Kr
E, = HW (B5)

where « is the polarizability of the moleculeg, is the di-
electric constant of the medium;? is the Debye screening For lp,=10 nm, e=80, a=r=1/2 nm, =1 eV, and Kt

length, andl is the ionization energy of the moleculg34]. =1 nm, we find thaE = 10°%kgT andE |, = 2kgT. At high salt
At wide separations the polymers can be approximated asoncentrations, when the electrostatic screening lergth
conducting spheres with a radi&y; thus aO:Rg. In aque- =2 A, these dipolar interactions are suppressed by a factor

ous solutionse=80 and for anl of order eV thenE,y,  of =10* suggesting that the binding mechanism discussed in
<1 eV sincer >R, If, on the other hand; <R it is more  the article dominates at short interchain separation. At lower
accurate to describe the polymers as narrow ellipsoids. Isalt concentrations van der Waals interactions play a larger
this situation we approximate the polymers as ellipsoids ofole in the formation of the aggregates, but the structure of
lengthl, and thicknessa that is a monomeric dimension. The those aggregates will still depend on the interchain electron
polarizability along the polymer is found to be of ord86]  tunneling mechanism.
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