
Phys 971 Stat Mech: Homework 7

due 12/13/2013
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Consider the adsorption of gas molecules to a surface. In the gas phase we will treat the
molecules as an ideal gas with fixed chemical potential µ. We will treat the surface as a
2D square lattice (coordination number z = 4) with N binding sites. There is a binding
energy −ε for the binding of each molecule to the surface. In addition, there is a favorable
interaction energy −ε′ between adsorbed molecules on adjacent binding sites. Each binding
site can be occupied by zero or one molecule. Derive an equation for the surface coverage
θ = Nbound/N of the bound molecules in the mean-field approximation. Sketch graphical
solutions to this equation for the cases µ < µc when the lattice is sparsely populated and
µ > µc when the gas phase is sufficiently concentrated that a condensed phase has appeared
on the lattice.
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Pathria 12.13 (11.13 in version 2) Consider a two-component solution of NA atoms of type
A and NB atoms of type B, which are supposed to be randomly distributed over N(=
NA + NB) sites of a single lattice. Denoting the energies of the nearest-neighbor pairs AA,
BB, and AB by ε11, ε22, and ε12, respectively, write down the free energy of the system
in the Bragg-Williams approximation∗ and evaluate the chemical potentials µA and µB of
the two components. Next, show that if ε = (ε11 + ε22 − 2ε12) < 0 (i.e. if the atoms of the
same species display greater affinity to be neighborly), then for temperatures below a critical
temperature Tc, which is given by the expression q|ε|/2kB∗∗, the solution separates out into
two phases of unequal relative concentrations.

∗This is the mean field approximation discussed in lecture. ∗∗Here q is the lattice coor-
dination number. [My solution differs from the one given by Pathria (above) by a factor of
2. –JS]
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Pathria 12.20 (11.20 in version 2): Consider a system with a modified expression for the
Landau free energy, namely

ψh(t,m) = −hm+ q(t) + r(t)m2 + s(t)m4 + u(t)m6,

with u(t) a fixed positive constant. Minimize ψ with respect to the variable m and examine
the spontaneous magnetization m0 as a function of the parameters r and s. In particular,
show the following∗

(a) For r > 0 and s > −(3ur)1/2, m0 = 0 is the only real solution.
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(b) For r > 0 and −(4ur)1/2 < s ≤ −(3ur)1/2, m0 = 0 or ±m1, where m2
1 = ((s2 −

3ur)1/2 − s)/3u. However, the minimum of ψ at m0 = 0 is lower than the minima at
m0 = ±m1, so the ultimate equilibrium value of m0 is 0.

(c) For r > 0 and s = −(4ur)1/2, m0 = 0 or ±(r/u)1/4. Now the minimum of ψ at m0 = 0
is of the same height as the ones at m0 = ±(r/u)1/4, so a nonzero spontaneous magnetization
is as likely to occur as the zero one.

(d) For r > 0 and s < −(4ur)1/2, m0 = ±m1 — which implies a first-order phase
transition (because the two possible states available here differ by a finite amount in m).
The line s = −(4ur)1/2, with r positive, is generally referred to as a “line of first-order phase
transitions.”

(e) For r = 0 and s < 0, m0 = ±(2|s|/3u)1/2.
(f) For r < 0, m0 = ±m1 for all s. As r → 0, m1 → 0 if s is positive.
(g) For r = 0 and s > 0, m0 = 0 is the only solution. Combining this result with (f), we

conclude that the line r = 0, with s positive, is a “line of second-order phase transitions,”
for the two states available here differ by a vanishing amount in m.

The lines of first-order phase transitions and second-order transitions meet at the point
(r = 0, s = 0), which is commonly referred to as a tricritical point.
∗ To fix ideas, it is helpful to use the (r, s)-plane as our “parameter space.”
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In class we looked at a simplified model of diffusion by calculating the properties of a ran-
dom walk on a 1D lattice. Here we will consider the more realistic case of 3D diffusion in
continuous space. We will treat the diffusive process as a series of moves separated by a
fixed time interval ∆t. For each move, the particle displacement is normally distributed

P1(x) =
1

(2π)3/2b3
e−x

2/2b2 (1)

where b is a parameter describing the step size.
a) Calculate the mean squared displacement 〈(x(t)−x(0))2〉 after a time t = N∆t where

x(t) =
∑N

i=1 xi.
b) Show that the diffusion process is scale invariant at timescales longer than the micro-

scopic collision time. To do this calculate the probability distribution for the displacement
after N steps

PN(R) =

〈
δ

(
R−

N∑
i=1

xi

)〉
(2)

where δ is the Dirac delta function and each of the xi are distributed according to Eq.
1. Show that this distribution is equivalent to a random walk of N ′ = N/λ steps of size
b′ = bλ1/2 where λ is an arbitrary scale factor.
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Pathria 15.8 (14.11 in version 2): Integrate equation (15.3.14) to obtain

r(t) = v(0)τ(1− e−t/τ ) + τ

∫ t

0

(1− e(u−t)/τ )A(u)du,

so that r(0) = 0. Taking the square of this expression and making use of the autocorrelation
function KA(s), derive formula (15.3.31) for 〈r2(t)〉.
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