
Phys 971 Stat Mech: Final

due: 12/20/2013 at 10am
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(10 points) Consider N identical quantum states (with energy ε) in contact with a large
reservoir of fermion particles. When the system is at equilibrium, it is observed that N/4
of the states are occupied with a single particle. Then a wizard magically transforms the
particles into bosons. How many particles occupy the states after equilibrium is restored?
Assume that the reservoir is large enough that it is not significantly perturbed by the flux
of particles into/out of the states. Also, for this admittedly silly question, assume that both
the fermions and bosons are spinless.
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(20 points) The Peierls theorem showed that one dimensional conductors will spontaneously
distort in such a way to open a band gap at the Fermi energy. After this transition, the lack
of accessible empty electronic states means that the material becomes a very poor conductor.
In this problem we will examine a very simple model of this transition.

The energy of the system is the sum of two terms, the electronic energy and the lattice
energy U = Uelec + Ulattice. The lattice energy is simply the elastic energy of distorting the
atoms away from their equilibrium position
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where Ks is the effective spring constant for the bonds, N is the number of atoms in the
lattice, and we have assumed that each of the atoms is perturbed from its equilibrium position
by an amount ±u0 (see figure). After the transition the periodicity of the lattice doubles
from one atom per unit cell to two atoms. According to band theory, this has the effect of
opening a gap in the energy spectrum. We will describe this using the greatly simplified
model in the right panel of the figure. In this model the dispersion relation is
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where k0 and E0 are the range of states in k- and E-space that are perturbed by the distortion
(for simplicity we will assume these are the only states in the system) and k = 0 has been
defined to coincide with the Fermi energy EF = kF = 0 (note that E(±k0) = ±E0). The
density of states in k-space is ρ(k) = Na/2π, where a is the lattice spacing. The gap
parameter is related to the lattice distortion by ∆ = 4αu0, where α is a parameter that
relates the electronic coupling (hopping) to the atomic spacing.

a) (15 points) If kBTNak0/2πE0 � 1, minimize U to compute the magnitude of the
lattice distortion u0.

b) (5 points) Describe qualitatively what happens to the lattice distortion in the opposite
limit when kBT/∆� 1.
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Figure 1: (left) Cartoon of the uniform conducting state and distorted insulator state. (right)
Plot of the electronic state energy as a function of the wavenumber k.
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(25 points) Consider a molecular zipper with N links. Each link has a state in which it is
closed with energy −εz and a state in which it is open with energy 0. We require that the
zipper can unzip only from the right end and that link number s can only open if all links
to the right (s+ 1, s+ 2, . . . , N) are already open.

a) Evaluate the partition function of the zipper.
b) Now assume that there are also molecules that can block the zipper. These molecules

bind to site M of the zipper with energy −εb and prevent sites s ≥ M from closing. Treat
the blocking molecules as an ideal gas of Nb � 1 particles in a container of volume V .
Compute the probability that the zipper is blocked from closing as a function of the binding
site position M and the concentration of blocking molecules cb = Nb/V .

Unblocked Blocked 

Figure 2: Cartoons of the molecular zipper with (right) and without (left) a blocking molecule
bound. The red link indicates the only spot that the blocking molecule can bind to.
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(25 points) Consider the adsorption of particles to a d-dimensional square lattice from a
reservoir of fixed chemical potential µ. Each site on the lattice can accommodate only one
particle, but that particle can bind in two different states with energies −U + ε and −U − ε,
respectively. The Hamiltonian of the system is:

H = −U
∑
i

ni − ε
∑
i
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2
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Here the first term accounts for the average binding energy −U between a particle and the
lattice (ni = 0, 1), and the second term describes the energy splitting between the two states
(σi = ±1). The third term describes an attractive energy between particles on adjacent
sites. This energy is −J if both sites are occupied (ni = nj = 1) and zero if either ni = 0 or
nj = 0. The sum on the third term is restricted to nearest neighbor pairs (the coordination
number is q = 2d in this case). Develop a mean field theory describing this system. Derive
an equation for the density θ = 〈ni〉 order parameter.
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(20 points) In lecture we analyzed a one-dimensional lattice random walk. Here we will
consider the case of a biased random walk. At each time step τ the particle has a probability
p of hopping to the right and a probability (1 − p) of hopping to the left. Compute the
probability PN(m) that a particle starting at the origin arrives at site m after N steps. Also,
compute 〈m〉 and 〈m2〉.
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