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The Problem

Physics: What happens when light enters a dielectric
material? We consider the case of translational symmetry
along one axis and transverse magnetic polarization.
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The Problem

Math:

ψ : R
2 → C(1)

0 = (k2 + ∇2)ψ(2)

where ψ is the electric field in the direction of symmetry and
k = ω

√
εµ, where ε, µ are piecewise constant and depend on

the material.
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Weber’s Theorem

ψ(r) = − i

4

∮

∂A

[

ψ
∂

∂ν
H

(1)
0 (k|l − r|) −H

(1)
0 (k|l − r|)∂ψ

∂ν

]

dl(3)

∂A is the boundary of the dielectric
ν is the outward unit normal of ∂A
l goes along ∂A

H
(1)
0 is the zeroth Hankel function of the first kind

Mathematische Annalen 1 (1869), 1-36
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Boundary Element Method

Using a delta function to absorb ψ into the integral:

0 =

∮

∂A

B(l)
∂ψ

∂ν
+ C(l)ψdl(4)
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Boundary Element Method

We form a matrix M
Elements Bij and Cik

N is the number of discretization points
i ∈ [1, 2N ] (integrate along the both sides of the
boundary)
j ∈ [1, N ] and k ∈ [N + 1, 2N ]

Thus M is a 2N × 2N matrix.
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Boundary Element Method

The eigenvector X has 2N elements.
The top N elements form ∂ψ

∂ν , the rest from ψ.

~0 = MX(5)

Two Dimensional Dielectric Cavities – p.7/15



Scattering

Suppose there is an incoming wave Xin.
Extend ∂A to include a boundary at ∞.
The boundary at ∞ has d discrete points.

M0Xin = MX(6)

where M0 is M , with Bij , Cik = 0 for i < 2N − d.

Two Dimensional Dielectric Cavities – p.8/15



Scattering

The total scattering cross section

σ =
1

|k| Im
[
∮

δ∞

e−i
~k·~l

(

i~k · ~ν(ψ − ψin) +
∂ψ

∂ν
−
∂ψin
∂ν

)

dl

]

(7)

gives the effective area in which collisions take place
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Results

Descritization of the boundary with Bézier Curves

B2(t) = (1 − t)2~x0 + 2t(1 − t)~x1 + t2~x2, t ∈ [0, 1](8)
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Results

Abnormally large values for the first few elements of X
Backscattering

Left: My Plot. Right: Jan Wiersig’s Plot.
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Quadratic Time

Two Dimensional Dielectric Cavities – p.12/15



Resonances

Newton’s Method:

kn+1 = kn −
q

Tr[M−1(kn)
∂M
∂k ]

(9)

converges to q-fold degenerate resonances.
Estimate resonant k using peaks in the scattering cross
section:

k0 = height − i

2
width(10)
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Off-Boundary Wave

Using M ’s null eigenvector ψ(l)

r ∈ A(11)
l ∈ ∂A(12)

ψ(r) =

∮
[

ψ(l)
i

2

∂

∂ν
H

(1)
0 (k|r − l|) − ∂ψ

∂ν

i

2
H

(1)
0 (k|r − l|)

]

dl(13)

Two Dimensional Dielectric Cavities – p.14/15



References

Wiersig J 2003 J. Opt. A: Pure Appl. Opt. 5 53
Knipp P A and Reinecke T L 1996 Phys. Rev. B 54 1880
Boriskina S V, Sewell P and Benson T 2004 J. Opt. Soc.
Am. A 21 393
Baker and Copson
The Mathematical Theory of Huygens’ Principle 1939
Shaw R P “An Integral Equation Approach to Acoustic
Radiation” in Topics in Ocean Engineering 1970

Two Dimensional Dielectric Cavities – p.15/15


	 The Problem
	 The Problem
	 Weber's Theorem
	Boundary Element Method
	Boundary Element Method
	Boundary Element Method
	Scattering
	Scattering
	Results
	Results
	Quadratic Time
	Resonances
	Off-Boundary Wave
	References

