Numerical method of solution of equations (11) and (12).

To solve equations (11) and (12) numerically we first recast them in a modified form. We start with:

$$t_{L} + 1 = \frac{t_{L}(t_{1} + 1)(f^{2} + t_{R}^{2} - t_{L}^{2})}{\alpha f \sqrt{2(t_{L}^{2} + t_{R}^{2})f^{2} - (t_{R}^{2} - t_{L}^{2})^{2} - f^{4}}}$$
(B1)

[equation (11) of paper]

$$t_{R} + 1 = \frac{t_{R}(t_{1} + 1)(f^{2} + t_{L}^{2} - t_{R}^{2})}{(1 - \alpha)f\sqrt{2(t_{L}^{2} + t_{R}^{2})f^{2} - (t_{R}^{2} - t_{L}^{2})^{2} - f^{4}}}$$
(B2)

[equation (12) of paper]

Now defining $\beta = t_{\rm L}^2 - t_{\rm R}^2$ we rewrite (B1) and (B2) as

$$t_L + 1 = \frac{t_L(t_1 + 1)(f^2 - \beta)}{\alpha f \sqrt{2(2t_L^2 - \beta)f^2 - \beta^2 - f^4}}$$
(B3)

$$t_{R} + 1 = \frac{t_{R}(t_{1} + \mathbf{1})(f^{2} + \beta)}{(1 - \alpha)F\sqrt{2(2t_{R}^{2} + \beta)f^{2} - \beta^{2} - f^{4}}}$$
(B4)

Equation (B3) now depends on t_L and β while equation (B4) depends on t_R and β and only one variable, β , links (B3) and (B4).

To solve (B3) and (B4) for $t_{\rm L}$ and $t_{\rm R}$, the quantities f, t_1 and α are first fixed. A value of β is now selected. (B3) is solved to find t_L^{cal} ('cal' indicates a calculated value), and (B4) is solved for t_R^{cal} for this same value of β . The quantity $\beta^{cal} = (t_L^{cal})^2 - (t_R^{cal})^2$ is then calculated for this selected value of β . Finally the quantity $[\beta - \beta^{cal}]^2$ is calculated. The quantity $[\beta - \beta^{cal}]^2$ is then minimized by varying β and repeating the above process, an exact solution should give zero for $[\beta - \beta^{cal}]^2$. The solutions for $t_{\rm L}$ and $t_{\rm R}$ are those values of t_L^{cal} and t_R^{cal} obtained at the end of this minimization.

Once $t_{\rm L}$ and $t_{\rm R}$ are determined, the quantities y and d are determined from

$$\frac{y}{L_1} = \frac{\left(f^2 + t_R^2 - t_L^2\right)\left(f^2 - t_R^2 + t_L^2\right)}{2f^2\sqrt{2\left(t_L^2 + t_R^2\right)f^2 - \left(t_R^2 - t_L^2\right)^2 - f^4}}$$

[equation (9) of paper in reduced form]

and

$$\frac{d}{L_1} = \frac{f^2 + t_R^2 - t_L^2}{2f^2}$$

[equation (8) of paper in reduced form]

and the angles $\theta_{\rm L}$ and $\theta_{\rm R}$ are calculated from these values of y and d. Finally $d_{\rm shift}$ is calculated from $d_{\rm shift}/L_1 = (d - c)/L_1$.

The above calculation is repeated for selected values of α between 0 and 0.5. Then symmetry may then be used to extract the values of t_L , t_R , θ_L , θ_R , y/L_1 and d_{shift}/L_1 between 0.5 and 1 using:

$$t_{L}(\alpha) = t_{R}(1-\alpha)$$

$$t_{R}(\alpha) = t_{L}(1-\alpha)$$

$$\theta_{R}(\alpha) = \theta_{L}(1-\alpha)$$

$$\theta_{L}(\alpha) = \theta_{R}(1-\alpha)$$

$$y(\alpha) = y(1-\alpha)$$

$$d_{\text{shift}}(\alpha) = -d_{\text{shift}}(1-\alpha)$$

(The α in brackets denotes the functional dependence)