Temperature Dependence of Coercivity and Magnetic Reversal in SmCo_x Thin Films

M. J. O'Shea, R. Andreescu

Kansas State University Department of Physics Manhattan KS 66502 USA

mjoshea@phys.ksu.edu

If you cannot get the papers connected to this work, please e-mail me for a copy

Purpose of Work

1) Look at thickness dependence of permanent properties of SmCo₅

2) Determine the best preparation/treatment route to obtain strongly exchange coupled $\text{SmCo}_5 - \text{Co}$ two-phase films

Previous work by us on this material: Andreescu, O'Shea, Jour. Appl. Phys. 91, 8183 (2002) Andreescu, O'Shea, International Jour. Mod. Phys. B 15, 3243 (2001).

Structure of Sm-Co

SmCo₅ (hexagonal)

Sm_2Co_{17} (rhombohedral)

O Cobalt O Rare Earth

See O'Handley 'Modern Magnetic Materials', John Wiley and Sons (2000)
Barret et al 'Structure of Materials', Pergamon Press (1980)
Strnat, 'Ferromagnetic Materials', Vol 4, Wohlfarth ed., Elsevier Press (1988)

Exchange-Spring Magnet Hard Phase + Soft Phase (nanostructured)

E. F. Kneller, and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

R. Coehoorn, D.B. de Mooij and C. de Waard, J. Magn. Magn. Mater. 80, 101 (1989).

Properties	K	М	T _c
of phases	ergs/g	emu/g	°C
SmCo ₅	1x10 ⁸	105	685
Sm ₂ Co ₁₇	3x107	126	810
Со	3x107	162	1115

Sm-Co studies

<u>For SmCo₅</u>: Vary thickness_(d = 60 nm \rightarrow 500 nm)

- homogeneous SmCo₅
- do permanent magnetic properties depend on thickness?

<u>For SmCo_x</u>, x ≥ 5 (d ~500 nm) : Two starting geometries - multilayers and homogeneous SmCo_x - vary Co content to improve of energy product

Rapid thermal anneal (30 seconds)

Sputter Deposition

Homogeneous SmCo₅: Sputter directly from a SmCo₅ target

Multilayers of SmCo₅/Co: Si substrate switched between SmCo and Co sputter guns

Homogeneous $SmCo_x$: Add pieces of Co to $SmCo_5$ target

Sputter target: SmCo₁₂(Fe,Cu,Zr)

X-ray diffractograms for the 540 nm initially homogeneous SmCo₅ sample

$\underline{SmCo_5 \text{ films}}$ - $SmCo_5$ and trace of elemental Co phases identified

 $\underline{SmCo_x \text{ films}}$ - $SmCo_5$ and elemental Co phases identified

<u>Texture</u> – No significant texture found

<u>Grain size</u> $-12 \rightarrow 25 \text{ nm}$

Structure of annealed homogeneous films-

Nb/SmCo_X/Nb

Magnetization isotherms at selected measurement temperatures for an initially homogeneous $SmCo_{12}$ film after an anneal at 700 °C for 30 seconds.

The slight constriction centered on -20 kOe indicates the soft and hard phases are not completely coupled on reversal in this sample

Coercivity shows a strong dependence on temperature (analyzed later)

Homogeneous SmCo₁₂

High field magnetization (M_s), coercivity (H_{ci}) and energy product (BH_{max}) as a function of anneal temperature for several thicknesses of initially homogeneous SmCo₅ as indicated.

Generally the thickest samples (540 nm) have the best values of M_s , H_{ci} and energy product BH_{max}

For thin samples a 30 sec anneal is more effective than a 20 min anneal for high values of M_s , H_{ci} and energy product BH_{max}

Once more M_s decreases and H_c increases with increasing anneal temperature. This leads to a maximum in energy product at intermediate anneal temperature

•Initially homogeneous samples, best H_{ci} and BH_{max}

•Rapid anneal preferable to longer time anneal

•Anneal temperatures for

•homogeneous samples < multilayers

High field magnetization (M_s), coercivity (H_{ci}) and energy product (BH_{max}) as a function of anneal temperature and anneal time for several compositions of initially multilayered $SmCo_x$.

Once more M_s decreases and H_c increases with increasing anneal temperature. This leads to a maximum in energy product at intermediate anneal temperature

Multilayers (RT)

Multilayers (RT)

Coercivity and energy product as a function of measurement temperature for three selected Sm-Co samples

In going from 10 K to 400 K a 60% decrease in H_{ci} and a 4% decrease in M_s (not shown) occur.

These produce a roughly 20% decrease in BH_{max} .

Modified magnetization plot (see axes labels) for homogeneous $SmCo_5$ annealed at 600 °C for 20 minutes, and initially multilayered $SmCo_{6.8}$ annealed at 500 °C for 20 minutes.

A linear behavior is expected if the coercivity is determined by domain walls pinned by narrow inhomogeneities [Kronmuller et al, Jour. Magn. Magn. Mater. 74, 291 (1988)].

A fit yields a homogeneity size of about 0.5 nm.

The largest values of coercivity H_{ci} and energy product BH_{max} are given for each sample type along with the composition where that value was obtained.

Initial sample form		H _{ci} (kOe)	BH _{MAX} (MG.Oe)	
3x[SmCo ₅ (d nm)/Nb(36 nm)]		38	5.5	
Isolated homogeneous SmCo ₅ layers		(x = 5)	(x = 5)	
$\frac{10x[SmCo_{5}(24nm)/Co(y nm)]}{Initially multilayered SmCo_{x}, x>5*}$		35 (x = 6.5)	12.5 $(x = 8.7)$	
SmCo _x (d nm)		34.8	19	
Initially homogeneous SmCo _x , x>5		(x = 6.8)	(x = 12)	

* x is calculated from the SmCo₅ and Co layer thicknesses

Comparison with other <u>thin film</u> work

Author	Ref.	Sample	Method	BH _{max} MG.Oe
Kato et al	J. Appl. Phys. 87, 6125 (2000)	$\begin{array}{c c} SmFe_{12} \\ \hline \alpha -Fe \end{array}$	Sputter, 1 µm	18.5
Cadieu et al	J. Appl. Phys. 76, 6059 (1994)	SmCo	Sputter, 118 µm	16
Our work	J. Appl. Phys, 91, 8183 (2002)	SmCo/Co	Sputter, 500 nm	19
Sabiryanov et	Phys. Rev. B 58, 12071 (1998)	SmCo5/ CoFe	Theory	65

Anneal time dependence of H_{ci} , BH_{max}

Multilayer SmCo_{8.7}

Conclusions

-Thicker samples have best permanent magnet properties.

-A 30 sec anneal is most beneficial, especially for thinner samples

 $-H_{ci}(T)$ is fitted well by a domain wall pinning theory and is consistent with a pinning inhomogeneity size of about 0.5 nm