A Brief Introduction to Magnetism

M. J. O'Shea

Kansas State University

mjoshea@phys.ksu.edu

Periodic Table

	I	т	т۰	1	T																		He⁴	2ĸ
hcp	High IC,																						hcp	
3.75 6.12		1	วพ	' a 1	niso	tro	nv	,															5.83	;
Li 78K	Be						рJ									B	b. d	C tiamond	N 20K cubic	O comp	olex	F	Ne fcc	_
3.491	2.27 3.59						$\overline{\ }$											3.567	5.66 (N ₂)	(O ₂)	>		4.46	;
Nа 5К	Mg	an a tata a s	n ste			1	- -	Trustal	struic	ture			transe in	5		AI		Si tiamond	P	S) ex	Ci	Ar 4	١ĸ
4.225	3.21 5.21	* * *	n an		ne og fær det juli - 1910 gilde og stalletigt		a lati c lati	tice par tice par	ame	ter, in A ter, in A	·		ination By Setting			4.0	5	5.430	compton			(Cl ₂)	5.31	. 1
К 5К	Ca	Sc	Ti		V	Cr		Mn	Fe	Co		Ni			Zn	Ga	T	Ge	As	Se		Br	Kr 4	ŧК
bcc 5.225	fcc 5.58	hcp 3.31 5.27	hci 2.9 4.6) 15 18	3.03	2.88	в	cubic complex	2.8	7 2.5 4.0	p 51)7	тсс 3.52	B.6	51	пср 2.66 4.95	comp	lex (5.658	rnomb.	nex. chain	ns	(Br ₂)	5.64	۲
Rb эк	Sr	Y	Zr		Nb	Mo		Tc	Ru	Rh		Pd	Ag	1000	Cd	ln tetr	5	Sn (a)	Sb	Te		1 complex	Xe 4	łĸ
5.585	6.08	ncp 3.65 5.73	3.2 5.1	3 5	бес 3.30	<i>все</i> 3.15	5	2.74 4.40	2.7 4.2	1 3.8 8	80	3.89	4.0	9	2.98 5.62	3.25 4.95	5 6	5.49	(Homa).	chain:	s	(1 ₂)	6.13	1
Cs 5K	Ba	La	Hf		Ta	W		Re	Os			Pt	Au		Hg	TI	l I	<u></u> б	Bi	Po		At	Rn	
6.045	5.02	3.77 ABAC	3.1 5.0	9 5	3.30	3.16	5	2.76 4.46	2.7	4 3.8 2	34	3.92	4.0	8		3.46 5.52	2	1.95		3.34	4			
Fr	Ra	Ac	ħ							R	1			<u>г_</u>										1
—		fcc 5.31		Ce fcc	Pr he	k.	Nd hex.	Pn	n	Sm complex	Eu bcc	G	di ap	Т Б hcp	D: h¢	p	Ho hcp	Er hcs	b ho	n P	Yb fcc	Lu hc	5	
				5.1	.6 3.6 AE	AC	3.66	5 —			4.58	3 3. 5.	63 78	3.60 5.70) 3.) 5.	59 65	3.58 5.62	3.5 5.5	6 3. 9 5.	54 56	5.48	3 3.5 5.5	i0 i5	
				111		7	0	141		Fu	A		rua Che utich	Dk	- 0		E.			-	No			1
				1CC 5.0	1et 08 3.9	r. 92 94	compl	lex corr	plex	complex	3.64	4 –		-	· -			-	-	-		_ [_		
			\square		L ^{3.2}												<u>.</u>							
Lov	х Te																							
		,																						

Some have high anisotropy

Rare-earth and transition metals

+

-3d.4s

Closed subshells

3d,4s bands

+

Magnetic moment

Magnetic Moment – rare-earths

Rare-Earth metals (Gd, Tb, Dy, Nd, Sm ...)

- magnetic moment resides on <u>4f electrons</u>
- neighboring 4f-shells do <u>not</u> overlap, are atomic like.
- Hund's rules ***** orbital (L) and spin (S) angular

momentum

- $\mu = \mu(L, S)$

Assume rare-earth is trivalent (usual case in metals) Use Hund's rules to find L, S, J.

i) maximize $S (= \Sigma m_s)$ ii) maximize $L (= \Sigma m_l)$ iii) $J = \clubsuit L-S \clubsuit$, shell less than half full, $J = \And L+S \clubsuit$, shell more than half full \clubsuit e.g. Tb[:] [Xe]4f⁸ $5d^26s^1$ $S = 3, L = 3, J = \clubsuit L+S \clubsuit = 6$ Tb³⁺ conduction

$$\boldsymbol{\mu} = \boldsymbol{\mu}(L, S) = g \ \boldsymbol{\mu}_{B} \mathbf{J} = 9 \boldsymbol{\mu}_{B}$$
$$\begin{pmatrix} g = 3/2 + \underline{S(S+1) - L(L+1)} \\ 2J(J+1) \end{pmatrix}$$

Origin of Magnetic Ordering

 $H = -h^2/2m \&^2 \Psi + U(r)\Psi + (e-e interaction term) + (dipole interaction term) + ...$

Dipolar term is only explicit spin-spin interaction term ***** small Cannot account for magnetic ordering

Pauli exclusion principle # e-e interaction between parallel spin (#) electrons is weaker than e-e interaction between antiparallel spin (#) electrons.

Modeled as -JS_i.S_j

 $E_{dipole}/k_B \oplus 1 K$

Magnetic Ordering – rare-earths

Magnetic moment on one 4f shell polarizes the conduction (5d,6s) electrons and a neighboring 4f ion feels this polarization.

This weak indirect interaction leads to magnetic ordering below room temperature for the rare-earths.

Resulting order can be complex:

Gd, Tb, Dy are all ferromagnetic at low enough temperatures. At higher temperatures Tb, Dy (< 300 K) they have a non-collinear magnetic order.

Elemental Rare-Earths

Magnetic ordering determined from neutron diffraction

[Wohlfarth, 'Ferromagnetic Materials']

Magnetic Moment and T_c – transition metals

Transition metals (Fe, Co, Ni)

- magnetic moment resides on d electrons
- neighboring d-shells overlap and broaden into a d-band.
- orbital (L) angular momentum is mostly quenched

- $\mu = \mu(S)$

Model: $-JS_i \cdot S_j$. Ferromagnetic if J >0.

Magnetic Anisotropy

Origin of Magnetic anisotropy

1) Interaction between a local quadrupole moment (L) and electric field gradients.

2) $\boldsymbol{\mu} = \boldsymbol{\mu}(L, S)$

Strength of Magnetic anisotropy

Rare-Earths# large L# strong magnetocrystalline anisotropyTransition metals# small L# weak magnetocrystalline anisotropy

Metal	K_{1} (J/m ³)	
Со	7 x 10 ⁵	$>$ All hexagonal : $E_A = K_1 \sin^2\theta + K_2 \sin^4\theta$
Tb	-5.6 x 10 ⁷	
Dy	-5.5 x 10 ⁷	
Gd	-1.2×10^{5}	

Note that for Fe, Ni: $E_A = (expression with cubic symmetry)$

Magnetic anisotropy and ordering temperature

Magnetic elements

	Rare-Earth	Transition				
	(Nd, Gd, Dy, Tb)	metal (Fe, Co, Ni)				
Moment	$\mu = (\mu_S + \mu_L)_{J_{,j}}$	$\mu = \mu_{\rm S} + \Delta(\mu_{\rm L})$				
	e.g. Tb 9.5µ _B	e.g. Fe 2.2µ _B				
	Gd 8.0 $\mu_{\rm B}$	Co 1.7μ _B				
	Nd $3.5\mu_{\rm B}$ (f electrons)	(d electrons)				
Magnetic	Indirect exchange.	Direct exchange.				
Ordering, T _c ,	weak	strong				
and exchange	T _C : Tb 220 K	T _C : Fe 1043 K				
	Gd 293 K	Co 1388 K				
	Nd 20 K					
Magnetic	Unquenched L.	Quenched L.				
Anisotropy-	Large anisotropy	Small anisotropy				
	K:	K:				
	Dy~-5.6x10 ⁷ J/m ³	$Fe \sim 5x 10^4 J/m^3$				
	Tb~- 5.5×10^7	$Co - 4x10^5$				
	$(Gd \sim 1x10^{6})$					

Why do domains form?

$\Delta F = + E(\text{domain wall}) - \text{dipolar energy}$

Domain Walls (uniaxial ferromagnet)

 $\Delta E_{ex} = n \left[(-Js^2 \cos \pi/n) - (-Js^2) \right] = Js^2 \pi^2/n, \qquad \Delta E_{anis} = n (K/2)$

Minimize wrt n: $n(equil) = \sqrt{(2Js^2\pi^2/K)} \rightarrow domain wall width$

and $\sigma_d = (s\pi/a^2) \sqrt{(2JK)} \rightarrow \text{domain wall energy/area}$

•anisotrpic materials have narrow walls, Tb 2 nm
•isotropic materials have thicker walls, Fe 30 nm

•(Block wall for bulk and thick films) •(Neel walls for thin films)

Single Domains

To estimate the size of a single magnetic domain consider a sphere, radius r:

 $\begin{array}{ll} \mbox{Magnetostatic energy (single domain)} &= - H_D.M_t \\ &= 1/3 \ \mu_o M_s^{-2} (4/3 \ \pi r^3) \end{array}$

When these two energies are equal, $r = r_{sd}$ giving,

$$r_{sd} = 9(AK)^{1/2} / \mu_o M_s^2$$

(Note: this is a rough estimate, ignored other possibilities such as curling mode) For a spherical Fe particle: $r_{sd} = 25$ nm.

For $r < r_{sd}$, magnetization reversal cannot occur via domain wall movement

How does r_{sd} depend on shape? How does r_{sd} depend on anisotropy?

Superparamagnetism

Flip rate due to thermal fluctuations:

size (nm)	τ
10	1 week
20	10^{104} years

Superparamagnetism \rightarrow

ultimate limit for storage density

Magnetic Reversal- single domain

Single Magnetic domain (uniaxial)-Stoner Wohlfarth model (source of anisotropy could be shape)

Magnetic reversal – multiple domains

Pinning of domain walls leads to a coercivity.

If a material is homogeneous, then wall does not have a position dependent energy, the wall may move freely and the coercivity is close to zero.

Research Area's

•Elemental Rare-Earth Particles and Layers

•Nanostructured Permanent Magnets

•Nanostructured Superconductor/Magnets

Questions you can now answer!

Why does mean field theory work better if atoms have lots of nearest neighbors or if the interaction is long range?

Why do heavy rare-earths have a bigger μ than light rare-earths?

Why do transition metals have a smaller μ than rare-earths?

Why is the magnetic ordering temperature of transition metals larger than for rare-earths?

Why is the magnetic anisotropy of transition metals smaller than rare-earths?

Why do magnets break up into magnetic domains?

What determines the width of a magnetic domain wall?