Influence of Size on the Properties of Materials

M. J. O'Shea

Kansas State University

mjoshea@phys.ksu.edu

If you cannot get the papers connected to this work, please e-mail me for a copy

1. General Introduction to finite size

Why Make Things Small?

1) <u>Modify/create new</u> materials properties

i) Finite size effects Quantization of energy levels (confinement) $k_F = (3\pi^2 n)^{1/3}$ $\lambda_F \sim 1/n^{1/3}$

Reduced ordering temperatures Melting point Magnetic ordering

Increased coercivity (single magnetic domains)

ii) Surface/Interface effects. Layers, particles, < 10nm. Interface Anisotropy Interface Exchange

Giant magnetoresistance in magnetic nanostructures

Economical to make current devices smaller.

e.g. magnetic storage media (Himpsel, Adv. Phys. 47, 511 (1998))

Bit density for a hard disk

Electron density and size effects- general

Finite size effects - Quantization of energy levels (confinement) Allowed states:

 $\begin{array}{l} -h^{2}/2m \; (d^{2}/dx^{2}+\ldots) \; \psi = E_{k} \; \psi \qquad \psi(x+L,y,z) = \; \psi(x,y,z) \\ \\ \text{From SE E} = \; h^{2}k^{2}/2m \\ \\ \text{Boundary condition} \psi = e^{ikr} \qquad e^{ikxL} = 1 \quad \text{or} \quad k_{x}L = 2n\pi \\ \\ k_{x} = 2\pi/L, \; 4\pi/L, \ldots \\ \\ E_{k} = \; h^{2}/2m(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}) \\ \\ \text{Max } k = kF \qquad 2 \; (4/3) \; \pi \; k_{F}^{3} \; / (2 \; \pi/L)^{3} = N \qquad k_{f} = (3 \; \pi^{2}N/V)^{1/3} \\ \\ E_{f} = \; h^{2}/2m \; k_{f}^{2} \\ \\ k_{F} = \; (3\pi^{2}n)^{1/3} \\ \\ \lambda_{F} \sim \; 1/n^{1/3} \end{array}$

Semiconductor n << metal n

 $\begin{array}{l} L \mbox{ large - energy levels closely spaces - continuum} \\ L \mbox{ small Energy levels not closely spaced} \\ \hline \mbox{ Semiconductor n small, } \lambda_F \mbox{ is large. There size effects more important for semiconductors at large size than for metals.} \end{array}$

Electrons (and holes) in 'quantum wells'

Discuss the differences between a conductor, semiconductor, insulator

Energy levels and bandgaps in bulk materials

Room temp about 1/40 eV

Band structure of a quantum well

Semiconductor preparation

Starting materials must be very pure – then use a well defined amount of doping

Vapor phase epitaxy

Silicon tetrachloride reacts with H to give elemental Si.

Occurs at surface – deposit Si (+ any impurities).

HCl does not disturb surface

Reaction is reversible – etch Si surface

Can use other gases such as Silane (SiH₄)

2. Finite size in magnetic systems

Single magnetic domains

Bulk material – in the form of a single magnetic domain

B outside is large so $\int (B^2/2\mu_o) dV$ is small

Bulk material – breaks up into magnetic domains to reduce magnetostatic energy

B outside is small so $\int (B^2/2\mu_o) dV$ is small

Energetics of magnetic domains

Magnetostatic energy $E_m = \int (B^2/2\mu_o) dV \propto volume V$ of magnetic domain. $\varepsilon_w \equiv E_m/V = \{\int (B^2/2\mu_o) dV \} V \approx constant$

Domain wall energy, $E_w (J/m^2) \propto$ surface area of wall $\propto V^{2/3} \epsilon_w = E_w (J/m2)/V \propto$ surface area of wall/V $\propto V^{-1/3}$

Bulk: V^{-1/3} smaller than V, easier for domain walls to form

Nanoscale: V^{-1/3} larger than V, difficult for domain walls to form

So expect that for sufficiently small V, the sample should be a single magnetic domain.

Important because domain walls no longer present \rightarrow coercivity is very high

Why make things small?

→ M	←	←	>	←

Recording medium.

kT (thermal energy) > KV (anisotropy energy), moments not pinned to lattice.

When H = 0, M = 0 so $H_c = 0$.

Magnetic Anisotropy

Origin of Magnetic anisotropy

1) Interaction between a local quadrupole moment (L) and electric field gradients.

2) $\boldsymbol{\mu} = \boldsymbol{\mu}(L, S)$

Strength of Magnetic anisotropy

Rare-Earths# large L# strong magnetocrystalline anisotropyTransition metals# small L# weak magnetocrystalline anisotropy

Metal	K_{1} (J/m ³)	
Со	7 x 10 ⁵	$>$ All hexagonal : $E_A = K_1 \sin^2\theta + K_2 \sin^4\theta$
Tb	-5.6 x 10 ⁷	
Dy	-5.5 x 10 ⁷	
Gd	-1.2×10^{5}	

Note that for Fe, Ni: $E_A = (expression with cubic symmetry)$

A Problem: Superparamagnetism

Smaller bit size \rightarrow higher density magnetic recording (Co-Pt-Cr) Currently bit size is ~ 0.25 µm, Density = 10 Gigabit/in²

Superparamagnetism

Flip rate due to thermal fluctuations:

Lower limit \rightarrow bit size 20 nm, Density = 1 Terabit/ in²

Superparamagnetism \rightarrow ultimate limit for storage density 3. Tb (and other elemental rare-earth) particles in a Ti matrix

- fundamental studies

To pump

Structure

1) Particles -3 dimensions in the nm range

Isolated particles (Tb):

2) layers – 1 dimension in the nm range

Multilayers:

X-ray diffraction of R/Mo multilayers

X-ray diffraction of R/Mo multilayers

As size changes for particles or layers, look at:

Magnetic ordering temperature

Coercivity

Magnetic Anisotropy

Time dependent magnetization

T_c and finite size

1) Particles -3 dimensions in the nm range

Isolated particles:

Rare-earth/Ti matrix

2) layers – 1 dimension in the nm range

Reduction of T_c and Finite Size Scaling

Reduction of T_c with layer thickness described by:

 $(T_{bulk} - T_C)/T_C = ((d - d^{2})/t_0)^{-B}$

where:

- T_{bulk} bulk transition temperature
- B exponent to be determined
- d= about thickness of one monolayer
- t₀ constant to be determined

System	B(exponen	<u>t) Ref</u>
Gd	2.6 ± 0.4	O'Shea (1998)
Tb	1.9 ± 0.2	"
Dy	1.5 ± 0.2	"
Ni	1.25± 0.07	F. Huang (1993)
CoNi ₉	1.39± 0.08	"
Co	1.34±	C. Schneider (1990)

B is expected to be 1.33 ± 0.15 from theory. [Ritchie et, Phys. Rev. B7, 480 (1973)]

Coercivity

1) Particles -3 dimensions in the nm range

Isolated particles:

Rare-earth/Ti matrix

2) layers – 1 dimension in the nm range

Multilayers:

Magnetic Domains

Small particle

single domain

Larger particle

multi-domain

Domain wall motion

Multi-domain:

Η

Magnetic Domains

Single domain: coherent rotation

 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑
 ↑

Η

, , , , , , , , , , Η

 $\begin{array}{c} \downarrow \hspace{0.1cm} \downarrow \hspace{$

Magnetic Domains

Superparamagnetism

kT (thermal energy) > KV (anisotropy energy), moments not pinned to lattice.

When H = 0, M = 0 so $H_c = 0$.

H = 0

H = 0

4. Rare-earth layers and interface anisotropy

Anisotropy and Interfaces

Anisotropy/volume $\equiv K_u = (Bulk + Demag + Interface)/\Lambda$

$$K_u = 2K_s/\Lambda + (K_V - 2\pi M_s^2)t /\Lambda$$

Experiment: measure total anisotropy K_u as a function of Λ

Experimental Results

[Perera, O'Shea, J. Appl. Phys. 70, 6212 (1991)]

Interface anisotropy discussion

R	M _o	M _s	$K_v \ge 10^6$	Ks	$K_{\rm v}/n^{1/3}$
	(emu/cm ³)	(emu/cm ³)	(ergs/cm ³)	(ergs/cm ²)	(ergs/cm ²)
Dy ₈₀ Ni ₂₀	2260	860	-14(3)	0.50(10)	0.44(10)
Er	2250	1080	-2.57(20)	0.25(3)	0.08(1)

Note: $K_s > 0$ favors perpendicular anisotropy

Estimated enhancement of magnetic anisotropy using a point charge model, larger for Dy than Er.

A. Fert, Magnetic and Transport Properties of Metallic Multilayers, Summer School on Metallic Multilayers, aussois, France (1989)

Interface anisotropy discussion

Estimated enhancement of magnetic anisotropy using a point charge model, larger for Dy than Er.

A. Fert, Magnetic and Transport Properties of Metallic Multilayers, Summer School on Metallic Multilayers, aussois, France (1989) 5. Co/CoO thin layers and inverted hysteresis

Gao, O'Shea, J. Magn. Magn. Mater. 127, 181 (1993) O'Shea, Al-sharif, J. appl. Phys. 75, 6673 (1994)

X-ray diffraction

Hysteresis loops

[CoO-Co](t A)/Al(10 A)

H_c vs t

Co(t A)/Cu (34 A)

Model of two-phase system

Hysteresis Loop (not inverted)

Co-CoO Results

Can obtain inverted behavior in hysteresis with right choice of M's and K's

Appear to correspond to phases with large M and small K (pure Co) and a second phase with small M and larger K (CoO).

Final comments

Finite size effects exist in many nanostructured rare-earth based magnetic systems. These effects appear in the

- •Magnetic ordering temperature
- •Magnetic anisotropy
- •Coercivity

New physics at the interface also emerges with an interfacial contribution to magnetic anisotropy that can be measured multilayers.