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Note! This is the seminar that was given October 6, 2010. Since then, there has
been an update to the KamLAND paper to include the latest MINOS data, and
the result is that the “hint” of non-zero θ13 is much smaller. With the combi-
nation of MINOS and KamLAND, there is no longer any “enhancement” in the
lower end of the 90% limit. See the latest version of the paper: arXiv:1009.4771.

1 Introduction
• Theory: neutrino oscillation – first part of talk

• Experiment: KamLAND – second part of talk

• Results: arXiv:1009.4771v1 [hep-ex] – third part of talk

• Implications for Double Chooz and LBNE (and similar experiments) – last
part of talk

2 Neutrino Oscillation Theory

2.1 Neutrino mixing matrix
The three flavor eigenstates (νe, νµ, ντ ) can be expressed as a linear combination
of three mass eigenstates (ν1, ν2, ν3):

|να〉 =
3∑
i=1

U∗αi |νi〉 (α = e, µ, τ).

Here U is a unitary matrix conventionally defined as

1

http://arxiv.org/abs/1009.4771
http://arxiv.org/abs/1009.4771


2

Ignoring possible Majorana phases which are irrelevant to os-
cillation phenomenology, the PMNS matrixU is parametrized
by three mixing angles, θ12, θ23, θ13, and a CP-violating
phase δ. U may be written as

U =

 1 0 0
0 c23 s23

0 −s23 c23

  c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13


×

 c12 s12 0
−s12 c12 0

0 0 1

 , (1)

where sij = sin θij and cij = cos θij .
The mass-squared splittings (∆m2

ij ≡ m2
i −m2

j ) between
the neutrino mass states are described by two independent pa-
rameters, ∆m2

21 and ∆m2
32. At the currently achieved sensi-

tivity, mixing between ν1 and ν2 (ν1-ν2 mixing) can explain
the KamLAND data [3] and also, with addition of MSW en-
hancement [4, 5], the solar results [6–11]. Atmospheric [12],
K2K [13], and MINOS [14] data can be accommodated by
ν2-ν3 mixing. As of yet, there is no experimental evidence of
ν1-ν3 mixing (i.e., a nonzero θ13) with high statistical signifi-
cance.
Probing the value of θ13 is a subject of intense ongoing ac-

tivity. Themost stringent limit to date, from the 1-km-baseline
CHOOZ reactor experiment [15], is sin2 θ13 < 0.04 at the
90% C.L. Next-generation accelerator experiments (T2K [16]
and NOνA [17]) and reactor experiments (Double Chooz [18],
Daya Bay [19], and RENO [20]) aim to significantly improve
the sensitivity to this parameter and may definitively deter-
mine the value of θ13. If θ13 is nonzero, future oscillation
experiments may explore leptonic CP violation (parametrized
by δ) and probe the neutrino mass hierarchy (i.e., the sign of
∆m2

32). The feasibility of such experiments and the path for-
ward depend critically on the magnitude of θ13.
This article presents an updated KamLAND data set and

focuses on new constraints on θ12, ∆m2
21, and θ13 based on a

three-flavor combined analysis of KamLAND and solar data.
As motivated by [21], we also present a global analysis in-
cluding the CHOOZ, accelerator and atmospheric oscillation
experiments in order to explore possible hints of nonzero θ13.

II. APPROXIMATE THREE-FLAVOR NEUTRINO
OSCILLATION FORMALISM

Previous KamLAND results [3] were based on a two-
flavor (ν1-ν2) oscillation formalism which assumes θ13 = 0.
For the length scales relevant to reactor neutrino oscillation
at KamLAND and solar neutrino oscillation in the LMA-
MSW solution, the dependence of the more general three-
flavor phenomenology on the larger ν1-ν3 mass splitting
(|∆m2

31| ∼ |∆m2
32|% ∆m2

21) averages out and the three-
flavor survival probability (P 3ν

ee ), including matter effects,
may be approximated as

P 3ν
ee = cos4 θ13P̃

2ν
ee + sin4 θ13 . (2)

P̃ 2ν
ee has the same form as the survival probability in mat-
ter for ν1-ν2 mixing but with the electron density (Ne)
modified: Ñe = Ne cos2 θ13 [22]. Since sin2 θ13 & 1,
the survival probability can be further approximated as
P 3ν

ee ∼ (1− 2 sin2 θ13)P̃ 2ν
ee . Thus for KamLAND and the so-

lar experiments, ν1-ν3 mixing would give rise to an energy-
independent suppression of the survival probability relative to
the θ13 = 0 case.
For solar neutrino oscillation in the LMA-MSW solution,

coherent mixing can be safely ignored due to the long distance
between the Sun and the Earth. The two-neutrino survival
probability is simply expressed as

P̃ 2ν
ee = P"1 P1e + P"2 P2e , (3)

where P"i and Pie are, respectively, the probability of the
νe → νi transition in the Sun and the probability of the
νi → νe transition in the Earth with the modified electron den-
sity Ñe. Neutrino propagation in the Sun and Earth is calcu-
lated following the analytical procedure of [23, 24], and the
resulting survival probabilities agree well with numerical cal-
culations.
For reactor antineutrinos studied at KamLAND, the matter

effect in the Earth is not as large as for solar neutrinos. As-
suming a constant rock density (2.7 g/cm3), the two-neutrino
survival probability is given by

P̃ 2ν
ee = 1− sin2 2θ12M sin2

(
1.27∆m2

21ML

E

)
, (4)

where L is the electron antineutrino (νe) flight distance in me-
ters from the source to the detector, E is the νe energy in
MeV, and∆m2

21 is in eV2. θ12M and∆m2
21M are the matter-

modified mixing angle and mass splitting defined by

sin2 2θ12M =
sin2 2θ12

(cos 2θ12 −A/∆m2
21)2 + sin2 2θ12

, (5)

∆m2
21M = ∆m2

21

√
(cos 2θ12 −A/∆m2

21)2 + sin2 2θ12 .(6)

A = −2
√

2GF ÑeE, and has a negative sign for antineutri-
nos; GF is the Fermi constant. The matter effect modifies the
expected reactor νe event rate by up to 3%, depending on the
oscillation parameters.

III. KAMLAND EXPERIMENT

The KamLAND detector is located in Kamioka mine, Gifu,
Japan. The primary target volume consists of 1 kton of ultra-
pure liquid scintillator (LS). This inner detector (ID) of LS is
shielded by a 3.2-kton water-Cherenkov outer detector (OD).
Scintillation light is viewed by 1,325 17-inch and 554 20-inch
photomultiplier tubes (PMTs) providing 34% solid-angle cov-
erage. A detailed overview of the detector is given in [25].
The νe flux at KamLAND is dominated by 56 Japanese

nuclear power reactors. The flux-weighted average baseline
to these reactors is ∼180 km. The reactor fluxes are calcu-
lated precisely based on detailed operational data including

Note: I think it should be purely a matter of convention whether the matrix
is conjugated when going from flavor- to mass-eigenstatues or when going from
mass- to flavor-eigenstates. I’ve used the convention in Kayser’s 2008 mixing
review in the Review of Particle Physics.

2.2 Three beat frequencies
Side note: the 2010 Review of Particle Physics has replaced the old neutrino
mixing write-up by Kayser with a new one by Nakamura and Petcov.

• “The amplitude of the probability that neutrino νl′ will be observed if
neutrino νl was produced by the neutrino source can be written as...”
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If the number n of massive neutrinos νj is bigger than 3 due to a mixing between the
active flavour and sterile neutrinos, one will have additional relations similar to that in
Eq. (13.5) for the state vectors of the (predominantly LH) sterile antineutrinos. In the
case of just one RH sterile neutrino field νsR(x), for instance, we will have in addition to
Eq. (13.5):

|ν̄sL〉 =
4∑

j=1

U∗
sj |νj ; p̃j〉 ∼=

4∑
j=1

U∗
sj |νj , L; p̃j〉 , (13.6)

where the neutrino mixing matrix U is now a 4× 4 unitary matrix.

For the state vector of RH flavour antineutrino ν̄l, produced in a CC weak interaction
process we similarly get:

|ν̄l〉 =
∑
j

Ulj |ν̄j ; p̃j〉 ∼=
∑
j=1

Ulj |ν̄j , R; p̃j〉, l = e, µ, τ , (13.7)

where |ν̄j , R; p̃j〉 is the helicity (+1) state of the antineutrino ν̄j if νj are Dirac fermions, or
the helicity (+1) state of the neutrino νj ≡ ν̄j ≡ χj if the massive neutrinos are Majorana
particles. Thus, in the latter case we have in Eq. (13.7): |ν̄j ; p̃j〉 ∼= |νj , R; p̃j〉 ≡ |χj , R; p̃j〉.
The presence of the matrix U in Eq. (13.7) (and not of U∗) follows directly from
Eq. (13.1).

We will assume in what follows that the spectrum of masses of neutrinos is not
degenerate: mj %= mk, j %= k. Then the states |νj ; p̃j〉 in the linear superposition in
the r.h.s. of Eq. (13.5) will have, in general, different energies and different momenta,
independently of whether they are produced in a decay or interaction process: p̃j %= p̃k, or

Ej %= Ek, pj %= pk, j %= k, where Ej =
√

p2
j + m2

j , pj ≡ |pj |. The deviations of Ej and pj

from the values for a massless neutrino E and p = E are proportional to m2
j/E0, E0 being a

characteristic energy of the process, and are extremely small. In the case of π+ → µ+ +νµ

decay at rest, for instance, we have: Ej = E + m2
j/(2mπ), pj = E − ξm2

j/(2E), where
E = (mπ/2)(1 −m2

µ/m2
π) ∼= 30 MeV, ξ = (1 + m2

µ/m2
π)/2 ∼= 0.8, and mµ and mπ are

the µ+ and π+ masses. Taking mj = 1 eV we find: Ej
∼= E (1 + 1.2 × 10−16) and

pj
∼= E (1− 4.4× 10−16).

Suppose that the neutrinos are observed via a CC weak interaction process and that
in the detector’s rest frame they are detected after time T after emission, after traveling
a distance L. Then the amplitude of the probability that neutrino νl′ will be observed if
neutrino νl was produced by the neutrino source can be written as [33,35,37]:

A(νl → νl′) =
∑
j

Ul′j Dj U
†
jl , l, l′ = e, µ, τ , (13.8)

where Dj = Dj(pj ; L, T ) describes the propagation of νj between the source and the
detector, U

†
jl and Ul′j are the amplitudes to find νj in the initial and in the final
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flavour neutrino state, respectively. It follows from relativistic Quantum Mechanics
considerations that [33,35]

Dj ≡ Dj(p̃j ; L, T ) = e−ip̃j (xf−x0) = e−i(EjT−pjL) , pj ≡ |pj | , (13.9)

where [38] x0 and xf are the space-time coordinates of the points of neutrino production
and detection, T = (tf − t0) and L = k(xf − x0), k being the unit vector in the direction
of neutrino momentum, pj = kpj. What is relevant for the calculation of the probability
P (νl → νl′) = |A(νl → νl′)|2 is the interference factor DjD

∗
k which depends on the phase

δϕjk = (Ej − Ek)T − (pj − pk)L = (Ej − Ek)
[
T − Ej + Ek

pj + pk
L

]
+

m2
j −m2

k

pj + pk
L . (13.10)

Some authors [39] have suggested that the distance traveled by the neutrinos
L and the time interval T are related by T = (Ej + Ek) L/(pj + pk) = L/v̄,
v̄ = (Ej/(Ej + Ek))vj + (Ek/(Ej + Ek))vk being the “average” velocity of νj and
νk, where vj,k = pj,k/Ej,k. In this case the first term in the r.h.s. of Eq. (13.10)
vanishes. The indicated relation has not emerged so far from any dynamical wave packet
calculations. We arrive at the same conclusion concerning the term under discussion in
Eq. (13.10) if one assumes [40] that Ej = Ek = E0. Finally, it was proposed in Ref. 37
and Ref. 41 that the states of νj and ν̄j in Eq. (13.5) and Eq. (13.7) have the same
3-momentum, pj = pk = p. Under this condition the first term in the r.h.s. of Eq. (13.10)
is negligible, being suppressed by the additional factor (m2

j + m2
k)/p2 since for relativistic

neutrinos L = T up to terms ∼ m2
j,k/p2. We arrive at the same conclusion if Ej %= Ek,

pj %= pk, j %= k, and we take into account that neutrinos are relativistic and therefore, up
to corrections ∼ m2

j,k/E2
j,k, we have L ∼= T (see, e.g., C. Giunti quoted in Ref. 33).

Although the cases considered above are physically quite different, they lead to the
same result for the phase difference δϕjk. Thus, we have:

δϕjk
∼=

m2
j −m2

k

2p
L = 2π

L

Lv
jk

sgn(m2
j −m2

k) , (13.11)

where p = (pj + pk)/2 and

Lv
jk = 4π

p

|∆m2
jk|
∼= 2.48 m

p[MeV ]
|∆m2

jk|[eV 2]
(13.12)

is the neutrino oscillation length associated with ∆m2
jk. We can safely neglect the

dependence of pj and pk on the masses mj and mk and consider p to be the zero neutrino
mass momentum, p = E. The phase difference δϕjk, Eq. (13.11), is Lorentz-invariant.
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Eq. (13.9) corresponds to a plane-wave description of the propagation of neutrinos
νj . It accounts only for the movement of the center of the wave packet describing νj .
In the wave packet treatment of the problem, the interference between the states of
νj and νk is subject to a number of conditions [33], the localisation condition and
the condition of overlapping of the wave packets of νj and νk at the detection point
being the most important. For relativistic neutrinos, the localisation condition reads:
σxP , σxD < Lv

jk/(2π), σxP (D) being the spatial width of the production (detection) wave
packet. Thus, the interference will not be suppressed if the spatial width of the neutrino
wave packets detetermined by the neutrino production and detection processes is smaller
than the corresponding oscillation length in vacuum. In order for the interference to be
nonzero, the wave packets describing νj and νk should also overlap in the point of neutrino
detection. This requires that the spatial separation between the two wave packets at
the point of neutrinos detection, caused by the two wave packets having different group
velocities vj != vk, satisfies |(vj − vk)T |# max(σxP , σxD). If the interval of time T is not
measured, T in the preceding condition must be replaced by the distance L between the
neutrino source and the detector (for further discussion see, e.g., [33,35,37]) .

For the νl → νl′ and ν̄l → ν̄l′ oscillation probabilities we get from Eq. (13.8), Eq. (13.9),
and Eq. (13.11):

P (νl → νl′) =
∑
j

|Ul′j |2 |Ulj |2 + 2
∑
j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos
(∆m2

jk

2p
L− φl′l;jk

)
, (13.13)

P (ν̄l → ν̄l′) =
∑
j

|Ul′j |2 |Ulj |2 + 2
∑
j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos
(∆m2

jk

2p
L + φl′l;jk

)
, (13.14)

where l, l′ = e, µ, τ and φl′l;jk = arg
(
Ul′j U∗

lj Ulk U∗
l′k

)
. It follows from Eq. (13.8) -

Eq. (13.10) that in order for neutrino oscillations to occur, at least two neutrinos νj

should not be degenerate in mass and lepton mixing should take place, U != 1. The
neutrino oscillations effects can be large if we have

|∆m2
jk|

2p
L = 2π

L

Lv
jk

! 1 , j != k . (13.15)

at least for one ∆m2
jk. This condition has a simple physical interpretation: the neutrino

oscillation length Lv
jk should be of the order of, or smaller, than source-detector distance

L, otherwise the oscillations will not have time to develop before neutrinos reach the
detector.

July 30, 2010 14:36

• Please notice the important fact that there are three different “beat fre-
quencies” corresponding to the three differences in neutrino-mass-squared.

• There is also a phase offset in the oscillations given by
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It is non-zero if and only if l′ 6= l and both θ13 and δ are non-zero in the
mixing matrix.

2.3 “Wash out” of high frequencies
• At large L, the oscillations as E varies are so rapid that the detector can’t

resolve them.

• In this limit, only the slowest oscillation can be seen.

• The lowest ∆m2 is ∆m2
21.

• For electron neutrino (or antineutrino) oscillations, we have

νe = U∗e1ν1 + U∗e2νe2 + U∗e3νe3

and we get

13. Neutrino mixing 11

Eq. (13.22) describes with a relatively high precision the oscillations of reactor ν̄e on
a distance L ∼ 1 km in the case of 3-neutrino mixing. It was used in the analysis of
the results of the CHOOZ experiment and can be used in the analyses of the data of
the Double Chooz, Daya Bay and RENO experiments, which are under preparation.
Eq. (13.20) with n = 3 and l = l′ = µ describes with a relatively good precision the effects
of oscillations of the accelerator νµ, seen in the K2K and MINOS experiments. The
νµ → ντ oscillations, which the OPERA experiment is aiming to detect, can be described
by Eq. (13.20) with n = 3 and l = µ, l′ = τ . Finally, the probability Eq. (13.23) describes
with a good precision the νµ → νe and ν̄µ → ν̄e oscillations under the conditions of the
MINOS experiment.

In certain cases the dimensions of the neutrino source, ∆L, are not negligible in
comparison with the oscillation length. Similarly, when analyzing neutrino oscillation
data one has to include the energy resolution of the detector, ∆E, etc. in the analysis.
As can be shown [29], if 2π∆L/Lv

jk # 1, and/or 2π(L/Lv
jk)(∆E/E)# 1, the oscillating

terms in the neutrino oscillation probabilities will be strongly suppressed. In this case (as
well as in the case of sufficiently large separation of the νj and νk wave packets at the
detection point) the interference terms in P (νl → νl′) and P (ν̄l′ → ν̄l) will be negligibly
small and the neutrino flavour conversion will be determined by the average probabilities:

P̄ (νl → νl′) = P̄ (ν̄l → ν̄l′) ∼=
∑
j

|Ul′j |2 |Ulj |2 . (13.25)

Suppose next that in the case of 3-neutrino mixing, |∆m2
21| L/(2p) ∼ 1, while at

the same time |∆m2
31(32)

| L/(2p) # 1, and the oscillations due to ∆m2
31 and ∆m2

32

are strongly suppressed (averaged out) due to integration over the region of neutrino
production, the energy resolution function, etc. In this case we get for the νe and ν̄e

survival probabilities:

P (νe → νe) = P (ν̄e → ν̄e) ∼= |Ue3|4 +
(
1− |Ue3|2

)2
P 2ν(νe → νe) , (13.26)

P 2ν(νe → νe) = P 2ν(ν̄e → ν̄e) ≡ P 2ν
ee (θ12,∆m2

21)

= 1− 1
2

sin2 2θ12

(
1− cos

∆m2
21

2p
L

)
(13.27)

being the νe and ν̄e survival probability in the case of 2-neutrino oscillations “driven” by
the angle θ12 and ∆m2

21, with θ12 determined by

cos2 θ12 =
|Ue1|2

1− |Ue3|2 , sin2 θ12 =
|Ue2|2

1− |Ue3|2 . (13.28)

Eq. (13.26) with P 2ν(ν̄e → ν̄e) given by Eq. (13.27) describes the effects of neutrino
oscillations of reactor ν̄e observed by the KamLAND experiment.
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where P 2ν is the 2-neutrino oscillation formula, P 2ν = 1−sin2 2θ12 sin2 ∆m2
12L/(4p).
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2.4 Matter effects
Electrons in matter affect the “index of refraction” of the neutrinos: their phase
changes with distance differently due to interactions with the electrons.

3 KamLAND experiment
(Refer to paper.)
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3.1 Overall scheme

3.2 Expected events

3.3 Candidate selection

3.4 Efficiency model (Fig. 1 of paper)

3.5 Backgrounds

3.6 Fit to theory

4 Results

4.1 Best fit and confidence regions (Figs. 2-4)

4.2 Survival probability visualization and fit (Figs. 5-6)

4.3 Interpretation of θ13 confidence region.

5 Implications for future experiments
In general, the “hints” of non-zero θ13 is good news for these experiments:

• Upcoming reactor experiments: Double Chooz, Daya Bay, RENO.

• Upcoming accelerator experiments: T2K, NOνA, LBNE.

5.1 Reactor experiments: Double Chooz, Daya Bay, RENO
• Look for ν̄e disappearance over ~1 km baseline:

Pν̄e→ν̄e
= 1− sin2 2θ13 sin2 ∆m2

31L

4p
.

• Note magnitude of disappearance ∝ sin2 2θ13. (Not sin2 θ13.)

• Double Chooz ultimately sensitive (@90%) down to sin2 2θ13 = 0.03; Daya
Bay and RENO aim for 0.01.

Math for θ13:

sin2 2θ = [2 sin θ cos θ]2

= 4(sin2 θ)(1− sin2 θ)
sin2 θ = 0.017+0.010

−0.009 ⇔ sin2 2θ = 0.067+0.038
−0.035

• Of course θ13 is what it is. But if you believe the error bars and interpret
them as “odds”, then 84% confident that sin2 2θ13 > 0.067−0.035 = 0.032.
This is encouraging.
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5.2 Accelerator experiments
• T2K, NOvA, and LBNE look for both θ13 and δ. Can only see the later

if the former is non-zero.

• Sensitivity....
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