
 1

Class #1

Programming and Numerical Methods for Scientists
and Engineers

 2

“What every computer has to have”

● Central Processing Unit.

● At least one input device.

● At least one output device.

● Memory:

– almost always some
Random Access Memory

– usually some permanent
storage.

Permanent
Storage

RAM

CPUInput Output

 3

“All Computing is Numeric”

● The memory stores
numbers in locations with
numeric addresses.

● The I/O devices read and
write numbers.

● The CPU processes
numbers.

● Text? Each character has a
numeric code.

● Images? Each pixel has a
numeric value.

Permanent
Storage

RAM

CPUInput Output

 4

Binary Numbers

binary octal hex decimal
00000000 000 00 0
00000001 001 01 1
00000010 002 02 2
00000011 003 03 3
00000100 004 04 4
00000101 005 05 5
00000110 006 06 6
00000111 007 07 7
00001000 010 08 8
...
00001111 017 0F 15
00010000 020 10 16
00010001 021 11 17
...

● Groups of 3 or 4 bits
separate conveniently into
the octal (base 8) or
hexidecimal (base 16)
numbers.

● In C, C++, and some other
languages, hexidecimal
constants begin with 0x to
distinguish them from decimal.
E.g., 0x42=66≠42=0x2A

● Z80 assembly language uses a
trailing ``h'' to indicate a
hexidecimal number. (E.g.,
66=42h≠42.)

 5

Memory, Input, and Output

● RAM is a collection binary numbers (“bytes” or “words”),
each accessible by a unique numeric address. (E.g., 8bit
values in 216 addresses for a lowly Z80 microprocessor.)

● Simple input devices provide one byte or word at a time.
Each device has its own address.

● Simple output devices accept one byte or word at a time.
Each device has its own address.

● More sophisticated I/O devices are possible, such as block-
transfer or direct memory access. (Typically used for mass
storage devices like disk drives.)

 6

What a CPU is

● Usually a big integrated
circuit.

● Memory read/write pins
initiate memory access,
address pins select what
memory location to access,
data pins have the actual
data read in/out.

● Some CPUs have an I/O
pin to direct data from/to
input/output devices.
(Alternatively, they may use
“memory mapped I/O”.)

 7

What's inside the CPU?

● Counters, “registers”, an “arithmetic logic unit”, an
instruction decoder, and a lot of switches.

 8

What does the CPU do?

The CPU repeatedly follows an
“instruction cycle”. Simplified
version:

1. Put the value of the Program
Counter on the address bus,
read the number there.

2. Operate on the registers,
flags, and memory in some
way depending on that number.

The number fetched in step 1 is
called the instruction or operation
code.

 9

What kinds of operations can the CPU
perform? (Just some examples.)

● Read a value from a memory
location into a register.

● Add, subtract, or compare two
registers, shift the bits in a
register left or right, other kinds
of mathematical operations.

● Store a value from a register into
a memory location.

● Set the program counter to a
different value (“jump”),
possibly conditionally on a flag
(“conditional jump”), possibly
saving the old value first (“call”).

 10

Examples of opcodes in Z80 instruction set
#bytes binary (or hex) operation mnemonic description

1 r←r' LD r, r'

2 r←n LD r, n

1 r←(HL) LD r, (HL)

1 (HL)←r LD (HL), r

3 d d←n n LD dd, nn

3 HL ← (n n) LD HL, (nn)

3 (n n)←HL LD (nn), HL

2 O(n)←A OUT (n), A

1 d d←d d + 1 INC dd increments register pair dd

2 A - n CP n

3 PC ← n n JP nn jumps to location nn

3 JP NZ, nn

2 HL←HL + d d

1 76 halt HALT halts the CPU

1 0 “no operation” NOP

01(r) 3(r') 3 stores contents of register r'
into register r

00(r) 3110, (n) 8 register r is set to the byte n

01(r) 3110
byte at address (HL) is
loaded into r

01110(r) 3 the byte in register r is
stored to address (HL)

00(d d) 20001, (n
n)16

register pair d d is set to
16-bit word n n

2A, (n n) 16 register pair HL is set from
(nn + 1) and (nn)

22, (n n) 16 HL is stored to address (nn
+ 1) and (nn)

D3,(n) 8 outputs byte in A to I/O
address (n)

00(d d) 20011

FE, (n) 8 compares A to byte n, sets
flags

C3, (n n) 16

C2, (n n) 16 PC ← n n iff
not Z

jumps only if Z flag not set

00(d d) 21001
ADD HL,
dd

adds register dd to HL and
stores in HL

does nothing but advance
PC

See also the Zilog Z80 manual [Z80manual] in References.

 11

Example Z80 program:
output three bytes to I/O address 11(hex) and halt

address opcode bytes mnemonic
0000 3E 41 LD A, 41H
0002 D3 11 OUT (11H),A
0004 3E 0D LD A, 0DH
0006 D3 11 OUT (11H),A
0008 3E 0A LD A, 0AH
000A D3 11 OUT (11H),A
000C 76 HALT

 12

Exercise 1

● Enter and run the program on the previous slide in the
Altair/Z80 emulator [SIMH].

– Enter it byte-by-byte, as if you were setting the address and
data switches on a very old-fashioned computer.

– Instructor will demonstrate.

 13

Exercise 2

● Enter a new program that uses the “LD A, (HL)”, “JP Z,
(address)”, “CP (n)” and “INC HL” opcodes (and the ones
in the previous example) to read and output from
consecutive memory locations until a 0 byte is found.

– For this one, you can use the opcode input option of the
Altair/Z80 emulator. (Instructor will demonstrate.)

● Use it to print “Hello World!” to the “printer” on I/O port
11H, or any message of your choice.

 14

Exercise 3 (start in class)

● Write a subroutine that prints out the value of A in
hexidecimal.

– A subroutine is just a section of code that ends with the RET
instruction. CALL (address) will save the PC on the stack
and jump to (address), and RET will get the new value of the
PC off of the stack.

– Copy the value of A to C first, since you'll need to use A for
the character code to output to port 11H.

– You can use AND A,0FH to clear the top 4 bits. You can use
SRL C to shift the bits of C right by one (divide by 2). (Refer
to the [Z80manual].) You can use the fact that 30H is the
ASCII code for '0', and 41H is the ASCII code for 'A'.

● Test for all values of A.

 15

How to multiply two 16-bit numbers with
an 8-bit CPU that has no multiply opcode

● General description of algorithm: Use a binary version of
the way we multiply two multi-digit numbers by hand, with
the simplification that 1*x = x and 0*x = 0.

● Use registers as follows:

– on entrance: multiplier in DE, multiplicand in HL.

– on exit: result in HL.
– H high order partial result, L low order partial result
– D high order multiplicand, E low order multiplicand
– B counter for number of shifts,
– C high order bits of multiplier, A low order bits of multiplier

 16

How to multiply two 16-bit numbers with
an 8-bit CPU that has no multiply opcode

 0: 06 10 LD B,10h ; load 16 into B
 2: 4A LD C,D ; move D into C
 3: 7B LD A,E ; move E into A
 4: EB EX DE,HL ; swap DE and HL
 5: 21 00 00 LD HL,0000h ; initialize HL with 0
 8: CB 39 SRL C ; shift C right, low bit to carry
 A: 1F RRA ; rotate A right through carry
 B: 30 01 JR NC,000Eh ; jump if carry not set
 D: 19 ADD HL,DE ; HL <- HL + DE
 E: EB EX DE,HL ; temporarily swap DE<->HL
 F: 29 ADD HL,HL ; use for quick multiply-by-two
10: EB EX DE,HL ; swap back
11: 05 DEC B ; count down
12: C2 08 00 JP NZ,0008h ; will loop 16 times
15: C9 RET ; return to caller

Note: you may want to relocate this code to start at some other address than 0.

 17

Assignment #1

A) Write up your own explanation of how the multiplication
subroutine implemented on the previous page actually
works. Use flow charts and equations as necessary.

B) Write a test program to check the multiplication subroutine,
and run it. The program should use the CALL instruction
and work as follows:

– load HL and DE with the numbers to be multiplied

– print the values to be multiplied

– CALL (address of the multiplication subroutine)

– print resulting value of HL

– repeat with at least 10 different values.

– Submit a copy of the program and its output.

 18

Goals

● Learn what computational algorithms fundamentally are.

● Learn how algorithms are implemented at the lowest level
of the computer.

● Form a strong basis for understanding what the compiler of
a higher level language actually does.

 19

Resources

[SIMH] SIMH simulator from the Computer History
Simulation Project: http://simh.trailing-edge.com/

[Z80manual] Zilog Z80 instruction manual:
http://www.zilog.com/docs/z80/um0080.pdf

http://simh.trailing-edge.com/
http://www.zilog.com/docs/z80/um0080.pdf

