
Class 0x0C: Hypothesis testing and significance
tests

Different cases of hypothesis and significance test-
ing
• Comparison of two hypotheses H0 and H1:

– The classic “simple hypothesis test”.
– Characterized by the significance level of the test.

• Comparison of hypotheses in some model for various values of some un-
known parameters of the model:

– Confidence intervals or confidence regions.
– Characterized by the confidence level of the region.

• Consistency of a single hypotheses H with data:

– Goodness-of-fit test or significance test.
– Returns a so-called “p-value” which, if small, can be interpreted as

the significance of any disagreement.

Simple hypothesis tests
Test statistic: one or more statistic(s) t, a function of the observations x.

Critical region: a region defined by some limits on the test statistic(s). This
is the “rejection region” for H0.

Significance level α of a critical region: Probability for a result to be in
critical region if H0 is true. (“Type I error”)

False negative probability β of a critical region: Probability for a result
to be outside critical region if H1 is true. (“Type II error”) 1− β is called
the statistical power of the test.

• The critical region is more generally defined as a region in the full space of
measurements x. This is equivalent to the definition here in the extreme
case t = x.
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• The “reject/accept” terminology is just terminology: “rejectH0” just means
“in the critical region”.

• H0 is also called the “null hypothesis”. A result outside the critical region
is also called “negative”, a result inside is called “positive”. (Think of
a medical test where H0 is “healthy”, H1 is a diagnosis of a particular
disease.)

• α is a probability depending only on the hypothesis H0 and the critical
region, not on any measurements. It is not a random variable or an ob-
servable as such. Similarly, β depends only on H1 and the critical region.

Constructing a good test statistic
• We can’t simultaneously minimize α and β.

• We can fix α and find the test that minimizes β.

• The Neyman-Pearson lemma says that a test that always achieves the
lowest possible β for a given α has a critical region R of the following
form:

R = x : Lx(H0) ≤ kLx(H1)

That is, the critical region is defined by the region where the likelihood of
the observation x assuming hypothesis H0 is not greater than k times the
likelihood assuming hypothesis H1.

• Written another way, the critical region is defined by the test statistic

t =
Lx(H0)
Lx(H1)

,

and the critical region is defined by t ≤ k.

• There is a 1-1 mapping between k and α. Choose the k that gives the α
you want. (Obviously, you need to know the p.d.f.s of both hypotheses to
do this.)

Example 1: unrealistic light bulb models
Suppose we have one model H0 that the p.d.f. for light bulb lifetime T is given
by

dP

dT
= f0(T ) = µ−1

0 e−T/µ0

for some known µ0, and another model H1 which is the same except that the
mean is µ1, also known.
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What’s the Neyman-Pearson test statistic?

t =
∏
i f0(Ti)∏
i f1(Ti)

.

Since we’re just going to compare it to a value k, we can just as well use

log t =
∑
i

log f0(Ti)−
∑
i

log f1(Ti).

In this case, this is simply

log t = N log(µ1/µ0) + (µ−1
1 − µ

−1
0 )

∑
Ti.

Let’s take µ1 < µ0. The critical region defined by log t ≤ k can be rewritten as

1
N

∑
Ti ≤

N−1 log k − log(µ1/µ0)
µ−1

1 − µ
−1
0

.

Stated in words: “reject” the larger lifetime hypothesis if the observed mean is
smaller than some amount. Adjust that amount to get the desired α. This can
be done assuming a gaussian distribution for the mean if N is large; otherwise,
evaluate it analytically or using MC methods.

Histograms of the test statistics from example 1
These plots were made with the code in classCh_example1.cc with N = 100,
µ0 = 1.0, and µ1 = 0.67.
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For any given value x chosen as the decision criteria on the test statistic,
the value of α is given by the c.d.f. of the test statistic assuming H0 (red curve
above), and β is given by 1-c.d.f. of the test statistic assume H1 (blue curve
above). Generally one chooses α first and then finds the necessary value of x
for the decision. The Neyman-Pearson lemma says that β is as low as it can be
for that α. Note there is in general no particular advantage to setting α = β,
although there may be reason to do so in some cases.
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Example 2: More realistic light bulb models
Suppose we have one model H0 that the p.d.f. for light bulb lifetime T is given
by

dP

dT
= f0(T ) = µ−1e−T/µ

for some unknown µ, and another model H1

dP

dT
= f1(T ) =

{
(h− |T − µ|)/h2 if |T − µ| < h,
0 otherwise ,

for some unknown µ and h. Construct the test statistic as before, and compare
the best fit for H0 to the best fit for H1.

Here you might want to evaluate the significance levels α for a given k using
a MC simulation.

Example 3: applying a signal/background cut
(... see discussion in hypothesis test section of [PDG-Stat] ...)

Two-hypothesis significance test
• You don’t have to decide in advance at what significance level you will

accept or reject a hypothesis.

• Depending on what you are doing, it may not even be appropriate to do
so. It might be more appropriate to report the significance of the result:
the value α′ such that the observed data would be in the critical region
for α > α′, out of the critical region of α < α′.

For example, you might be investigating a specific alternative to
Einstein’s theory of general relativity in light of some new data.
Rather than report just “hypothesis accepted” or “hypothesis
rejected” according to your personal, pre-chosen α, the world
would like to know what α′ is. Then every person can know, for
her/his own personal α, whether they want to accept or reject
the null hypothesis.

• Despite the fact that the significance is often reported as a percentage, it
is a random variable. It is definitely not the probability the hypothesis is
really right or wrong.
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Why the statistical significance isn’t the probabil-
ity you’d like
• The significance level, α, is a number you (or someone) chooses. You

adjust your test so it has that probability of giving you a false positive
(type 1 error), on average, over many data sets.

• α′ is random variable determined by one measurement or set of measure-
ments, numerically equal to P (t ≥ t′|H0), where t′ is the value of the test
statistic corresponding to the α significance level.

• What you often most want is P (H0|α′), the probability that the null
hypothesis is true given one measurement or set of measurements. Bayes’
theorem tells us

P (H0|α′) =
P (α′|H0)P (H0)

P (α′)
,

if the truth/falseness of H0 is itself a random variable. This might be
possible in the case of a medical diagnosis, but not for a law of nature.

– In the case of medicine, we can (perhaps) know all three probabilities
or p.d.f.s for a very well studied diagnostic test:

∗ the p.d.f. of diagnosis significances for healthy people P (α′|H0);
∗ the p.d.f. of the diagnosis significance for the entire population
P (α′), and
∗ the probability of someone in the population being healthy P (H0).

– In the case of a physical law, we have only one universe to observe,
so this becomes meaningless. Even if we adopt the many universes
idea, we have no way of knowing P (H0) over the many universes.*

Goodness-of-fit or one-hypothesis significance test
Again, we have a test statistic, which I’ll call T .

• The value of T should reflect how compatible the data is with the hypoth-
esis. (E.g., higher values of χ2 indicate less compatibility.)

• We should be able to derive the probability PT (t) = Prob(T ≤ t) for any
hypothesis.

• Examples of statistics for which PT (t) is well known include the χ2 for
gaussian data and the Kolmogorov-Smirnov statistic for histogram data.
(See discussion in Numerical Recipes [NumRecip].)

* See Comment on Bayesian statistics.
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• The log-likelihood logL is also used, although it requires derivation or
numerical simulation to determine PT (t).

• As far as I know, there is no equivalent to the Neyman-Pearson theorem
for this kind of test, probably because of the lack of an alternative hypoth-
esis with which to compare. There’s no universal, general purpose “best
approach”.

– For example, a test based on logL of the measurements might miss
an inconsistency that is readily apparent in a comparison of the his-
togram of the data points with the expectation values from the model.
(An example of this in assignment “option B” at the end of this lec-
ture.)

The p-value
The p-value is what the hypothetical model H says should be the probability to
find the statistic T in a region of equal or lesser compatibility than the observed
t: that is, p = PT (t) assuming H is true.

• If H is in fact true, p will be a random variable with uniform distribution
between 0 and 1.†

• If H is “significantly wrong”, then p will be a small number.

• The value of 1 − p is often reported as the significance with which a
hypothesis has been rejected. (For an example, see the claimed rejection
of the no-oscillation hypothesis in the abstracts of KamLAND2004 and
KamLAND2002.)

Why this statistical significance isn’t the probabil-
ity you’d like (II)
• The significance 1 − p of a single-hypothesis significance test is not the

same thing as the signifiance level α previously defined, but it is closely
related to the statistical significance α′ of a two-hypothesis test. Similar
comments apply.

• Because p is a uniform random variable when H is true, if you reject
hypotheses every time they have a p-value less than some personal thresh-
old α, you’ll eventually end up rejecting a fraction α of whatever true
hypotheses you examined.

† The proof is the reverse of the derivation of the inverse-distribution-function method of
generating a random variable.
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• You’ll also end up rejecting a lot of false hypotheses, but the probability
for that will depend on what the true model really is, which this kind of
test doesn’t consider.

• It’s not reasonable to use p to select hypotheses to accept, since p can take
on any value from 0 to 1 with equal probability when H is true.

Example 4: exponential plus background
How good is the fit of the exponential-plus-background model to the data in
the last assignment? Let’s use the best-fit likelihood Lmax as our test statistic.
We’ll get the p.d.f. for Lmax using MC simulation.

Procedure for building up p.d.f. of Lmax:
make a histogram to store the p.d.f.
loop M times:

simulate a dataset using the hypothesis
fit the dataset
“fill” histogram using Lmax

Procedure for simulating a dataset:
Loop N times:

generate random variable x according to the model p.d.f. for x
(see class notes on MC simulation, use inverse distribution
method)

store x in vector of doubles to be used as dataset
(instead of reading x from a file)

Now just read off the p-value from this histogram: according to the simula-
tion, if the hypothesis is true, what fraction of Lmax would be worse than what
you got for the actual data?

Assignment
Choose either “option A” or “option B” below -- you do not have to do both.

Option A: Complete example 4 above.

Option B: See below.

Assignment option B: globular clusters
Are the 119 globular clusters in the Arp 1965 catalog uniformly distributed in
cos θ, where θ is galactic latitude?
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• The likelihood of the cos θ values is not a good choice in this case: the
hypothesized distribution is uniform, Lcos θ doesn’t depend on the data
values, it’s always N log(1/2)!

• Instead, try using the likelihood of the θ values: dP/dθ = sin θ/2.

• Make a simple simulation along the lines of the exercise:

– Generate 1000 simulated data sets of 119 clusters distributed uni-
formly in cos θ. Transform to θ.

– Accumulate histogram of logLθ.

• Download the data from Vizier copy of Arp 1965. (Suggestion: download
in tab-separated-value format.)

• Read galactic longitude from file, calculate logLθ for this data set.

• What fraction of simulated data sets have less consistent data? (Lower
values of logL.) If there are almost none, then the hypothesis can be
rejected with some significance.

• Option B’ (very optional): instead of (or in addition to) using the like-
lihood as the goodness-of-fit statistic, try using the Kolmogorov-Smirnov
test (see [NumRecip]) or some other test.

Comment on Bayesian statistics
Even though P (H0|observation) is meaningless as a probability in the sense of
“the fraction of possible universes in which H0 would turn out to be true given
that we made these observations”, some people like to use Bayes’ law anyway to
characterize and update what they call their “subjective degree of belief”. Rather
than using objective data for P (H0), they use that term in Bayes’ law to reflect
their “prior subjective beliefs” (“priors” for short), deliberately introducing this
as something that can only be changed by statistically significant evidence to the
contrary. This approach has caused a lot of controversy over the years. In my
opinion, there is nothing wrong with this as long as one evaluates the resulting
p.d.f.s as carefully as possible and keeps in mind the limitations. However, it can
go badly wrong if the “prior” pre-assigns very low probability to what the data
actually ends up indicating, even if the “prior” is based on little or no relevant
data: for an extreme case, see “The Logic of Intelligence Failure” by Bruce G.
Blair [Blair2004], actually written by a proponent of this way of thinking. I
won’t talk about that further today.

References
In the following, (R) indicates a review, (I) indicates an introductory text, and
(A) indicates an advanced text.
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