
Class 0x0B: Statistics

Quick non-review of probability
I’m going to assume you already know about the following:

• Definition of probability in terms of frequency of occurrence in a large
sample.

• Probability density function (p.d.f.) for a continuous variable, and its
integral, the cumulative distribution function.

• Joint probabilities.

• Normalization.

• Definition of independent random variables as having separable joint p.d.f.
(fxy(x, y) = fx(x)fy(y) iff x and y independent.)

• Bayes’ theorem. (f(x|y)f(y) = f(y|x)f(x) = f(x, y))

• Expectation values.

See References.

Example: light bulb lifetime model

Suppose the correct model for the distribution of light bulb lifetimes* is

dP

dt
= f(t) =

1
µ
e−t/µ.

The expectation value for t is the mean,

E[t] =
∫ ∞

0

tf(t)dt = µ

The expectation value for the variance is

E[(t− µ)2] = V [t] =
∫ ∞

0

(t− µ)2f(t)dt = µ2

* Note: this is almost certainly not a good model for light bulb lifetimes.
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Caution on probabilities and expectation values
• Probabilities and p.d.f.s are theoretical models.

• They are not observable with perfect precision.

• Given an arbitrarily high number of observations N , the observed distri-
butions will converge to the true p.d.f. in the limit N →∞.

• Similarly, expectation values are not statistical means, although the latter
converges to the former in the limit N →∞.

What is a statistic?
A statistic is a quantity depending on random variables. A statistic is therefore
itself a random variable with its own p.d.f.

Examples of statistics on random variables: Mean:

〈x〉 =
1
N

N∑
i=1

xi

Mean of squares:

〈x2〉 =
1
N

N∑
i=1

x2
i

Cumulative distribution statistic:

S(x′) =
1
N

∑
i for xi≤x′

1

The last is an example of a statistic that is also a function of a parameter
x′. It should approach the cumulative distribution function as N →∞.

Example: statistics of lightbulb lifetimes
Using the same p.d.f. as in the earlier example, and assuming independent light
bulb lifetimes,

f(t1, t2, t3...) =
N∏
i=1

f(ti)

f〈t〉 (〈t〉) =
∫
〈t〉

N∏
i=1

f(ti)dti
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=
1
N

N∑
i=1

∫ 〈t〉
0

f(t1)dt1
∫ 〈t〉−t1

0

f(t2)dt2
∫ 〈t〉−(t1+t2)

0

f(t3)dt3....

• This is not very easy to evaluate.

• However, the central limit theorem tells us that forN � 1, the distribution
of 〈t〉 will approach a gaussian with mean E[t], variance V [t]/N .

Estimators
• An estimator is a statistic that can be used as an estimate of an unknown

parameter of the p.d.f., such as µ in the example.

• Statistical moments of the distributions are often useful as estimators.

Examples:

Mean: 〈x〉 can be used directly as an estimator for E[x], since E[〈x〉] =
E[x].

Variance: 〈(x− 〈x〉)2〉 provides an estimator for E[(x− E[x])2] = V [x],
but not an unbiased one. E[〈(x− 〈x〉)2〉] = V [x] · (N − 1)/N .

The statistical moments are not necessarily the least biased, most efficient,
or most robust estimators.

Desired properties of estimators
Consistency (desired perfect): Should converge to the correct value asN →

∞, mathematically.

Bias (desired low): Difference between expectation value and true value, at
any N .

Efficiency (desired high): Inverse of the ratio of the estimator’s variance to
the minimum possible variance, given by the Rao-Cramer-Frechet bound.

Robustness (usually desired high); Insensitive to departures from assump-
tions in the p.d.f. (Somewhat fuzzy.)

The likelihood statistic
Another statistic one can construct for a data set is the likelihood :

L =
N∏
i=1

fx(xi)

• Again, L is a random variable, with it’s own p.d.f.
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• If the p.d.f.s for x depend on some parameters α, the L is also a function
of α.

• It is numerically equal to the value of the joint p.d.f. of the N independent
observations of x.

• N.B. it is not a probability, because it doesn’t have the properties of a
probability. In particular, is definitely not a p.d.f. for α or a “probability”
of the theory to be true.

Maximum likelihood estimators
• If L(α) is a random variable, then the value of α that maximizes L(α) is

a random variable. Call it α̂.

• α̂ is a consistent estimator for α.

• It is asymptotically unbiased as N →∞.

• Its variance approaches the Rao-Cramer-Frechet bound as N → ∞, i.e.,
it is efficient.

• α may represent any number of parameters.

The variance of maximum likelihood estimators
• The inverse V −1 of the covariance matrix Vij = cov[α̂i, α̂j ] can be esti-

mated using

(V̂
−1

)ij = −∂
2 logL
∂αi∂αj

∣∣∣∣
α̂

.

• For large samples or perfectly Gaussian probabilities, L has a “Gaussian
form”, logL becomes parabolic in α.

– In this limiting case, the s-standard-deviation error contours for the
parameters can be found at −2(logL− logLmax) = s2.

• Finding proper confidence intervals in the more general case will be dis-
cussed in a later class.

Practical maximum likelihood estimators
It is usually easier to maximize

logL(α) =
N∑
i=1

log(fi(x;α)).
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Equivalently, one minimizes the “effective chi-squared” defined as −2 logL(α).
For Gaussian statistics, this is exactly the chi-squared, if the standard deviations
are known.

It is important to include all dependence on α in f(x;α), including normal-
ization factors.

Example: estimator for exponential distribution
For x > 0,

dP

dx
=

1
s
e−x/s.

Find the maximum likelihood estimator for s.

Example: estimators for double-exponential dis-
tribution
For real x,

dP

dx
=

1
2s
e−|x−µ|/s.

Find the maximum likelihood estimator for µ and s.

Example: estimator for Poisson distribution
For integer k ≥ 0,

Pk =
e−λλk

k!
.

Find the maximum likelihood estimator for λ.

Example: estimators for Gaussian distribution
For real x,

dP

dx
=

1√
2πσ

e−(x−µ)2/(2σ2).

Find the maximum likelihood estimator for µ and σ.
Note the estimator for σ is asymptotically unbiased in the limit of large N ,

but not unbiased at finite N . The bias can be corrected without degrading the
asymptotic RMS of the estimator.

5



Numerical implementation
Once you know how to minimize a function, and you know the p.d.f.s of the
data in your model, then numerical implementation of the maximum likelihood
method is easy. Just write the function to calculate:

− logL(α) = −
N∑
i=1

log(fi(x;α)).

Then minimize it.
Note: if you have too many parameters, you might need to simplify it some,

perhaps by pre-fitting some of the parameters in some faster way.

Exercise
Make a maximum likelihood fit of the data in “dataset 1” provided on the course
web page to the following model:

dP

dt
= f(t) =

 b if t < t1
b+ s if t1 ≤ t ≤ t2
b if t > t2

.

By “make a maximum likelihood fit”, I mean “estimate the parameters b, s, t1, t2
using the maximum likelihood method”:

• Check normalization of P .

• Derive the likelihood function.

• Find an analytic solution.

• Write the function to mimimize into your fitter program and minimize it
that way. Compare with analytic solution.

• Plot the solution vs. a histogram of the data and see if it make sense.

Assignment
Make a maximum likelihood fit of the data in “dataset 2” provided on the course
web page to the following model:

dP

dt
= f(t) =

{
b if − 1 < t < 0
b+ 1−b

µ(1−e−1/µ)
e−t/µ if 0 ≤ t < 1 .

By “make a maximum likelihood fit”, I mean “estimate the parameters b, µ using
the maximum likelihood method”:
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• Derive the likelihood function. (Turn this in on paper or by e-mailing a
PDF or similar document to me.)

• Find an analytic solution (if you can).

• Write the function to mimimize into your fitter program and minimize it
that way. (Compare with analytic solution, if you succeeded to derive it.)

• Plot the solution vs. a histogram of the data and see if it make sense.

• Turn in likelihood function, analytic soultion, code, results, and data-fit
comparison plot.

References
In the following, (R) indicates a review, (I) indicates an introductory text.

Probability:
PDG-Stat: (R) “Probability”, G. Cowan, in Review of Particle Physics, C.

Amsler et al., PL B667, 1 (2008) and 2009 partial update for the 2010
edition (http://pdg.lbl.gov).

See also general references cited in PDG-Stat.

Statistics:
Larson: (I) Introduction to Probability Theory and Statistical Inference, 3rd

ed., H.J. Larson, Wiley (1982).

PDG-Prob: (R) “Probability”, G. Cowan, in Review of Particle Physics, C.
Amsler et al., PL B667, 1 (2008) and 2009 partial update for the 2010
edition (http://pdg.lbl.gov).

See also general references cited in PDG-Prob.
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