Class 0x0A: Monte Carlo integration and
simulation

Simple Monte Carlo integration

Suppose we have some function f(z) of the n-dimensional parameter x. Pick N
random points x;, uniformly distributed in volume V. Then

N
IMC:%Zf(xi):V<f>
i=1

is itself a random number, with mean and standard deviation

_ —— — 1%
IMC:/dea U[Imic]:m%\/ﬁ\/<f2>—<f>2-

(Here angle brackets are used to denote the mean over the samples, and overline
is used to denote the true mean in the limit of infinite statistics.)
In plain English, Iy;¢ is an estimate for the integral.

Integration over many dimensions

e Ordinary numerical integration over n dimensions is not easy due to the
number of grid points required, O(m™) if m is the number of divisions on
each axis.

e It often happens that 1/v/N fractional accuracy from the MC method is
better than what you can get from the non-MC methods using N grid
points with m ~ N'/" divisions on each axis.

Integration over complicated volumes
If the volume V is hard to sample randomly (strange shape), just define a

function that is zero outside the volume and equal to f inside, and integrate
that over an easy-to-sample volume.

((x-cos(z)icosh(z))/0.25)*2+((y-sin(z)/cosh(z))/(0.2+0.05"sin(4*z}}}~2-1 +(z/6)* 2

- T N -

1 1
- [0%

o
b Lo o Lo Lo faaa

J
-

0.5

1

Figure 1: A complicated solid with fine-grained features that would be difficult
to integrate analytically or on a numerical grid.

How to get uniform random numbers

Short answer: use a function that returns a (pseudo) random number uniform
in the range [0, 1), available from many libraries.

It used to be considered necessary to talk about the pros and cons of vari-
ous random number generators (RNGs) a great deal, because bad RNGs were
commonplace, good ones were hard to find, and computers were so slow it was
worth considering using a RNG with poor randomness if it was faster.

The latter two factors are generally no longer true, so a little advice should
suffice for the moment.

e Stay away from the standard library function rand(). It tends to be one
of the poor ones, for historical reasons.

e The Mersenne Twistor RNG is widely available, and is considered a good
choice.

e The Marsaglia-Zaman RNG is also widely available, also a good choice.

e ROOT, CLHEP, and GSL all define various good random number gener-
ators for C++, including those mentioned above.

See also: GSL manual section General comments on random numbers.

http://www.gnu.org/software/gsl/manual/html_node/General-comments-on-random-numbers.html

Example: Mass of an ellipsoidal cloud

The interior of an ellipsoid is defined by (z/a)? + (y/b)? + (z/c)? < 1. Let the
density function be p(z,y, 2).

Algorithm:
initialize sum rhol = 0, sum rho2 = 0
loop N times:
pick uniform z in —a < z < a, uniform y in —b < y < b, uniform z
in—-c<z<ec
if (x/a)? + (y/b)? + (z/c)? < 1:
rho = p(z,y, 2)
sum_rhol += rho
sum_rho2 += rho * rho
V = 8*a*b*c
mean = sum_rhol/N
mean2 = sum_rho2/N
integral = V*mean
errorest = V*sqrt((mean2 - mean*mean)/N)

Weighting techniques (change of variable)

e If the function being integrated varies strongly on some variable of inte-
gration, it helps to redefine the variable to flatten the function.

e This is equivalent to concentrating the distribution of the variable in the
more significant region.

Example:
e Let p(z,y,2) = e** f(x,y) in the previous example.
e Define ds = e**dz, resulting in z = log(as)/a.

e Now integrate f(x,y) over dzdyds. The ellipsoidal boundary is still defined
by z,y, z, with z calculated from s.
Example: Mass of an ellipsoidal cloud (revisited)

The interior of an ellipsoid is defined by (z/a)? + (y/b)? + (z/c)? < 1. Let the
density function be p(x,y, z) = f(z,y)e*s.

Algorithm:

initialize sum 1 =0, sum 2 =0

s1=e"%/a, sy =e*/a
loop N times:
pick uniform z in —a < x < a, uniform y in —b < y < b, uniform s
m s; < s< 89
z = log(as)/«a
if (x/a)?+ (y/b)% + (2/c)®> < 1:
f=f(z,y)
sum 1 +=f
sum_ 2 +={f*f
V = 4ab(sy — s1)
mean = sum_ 1/N
mean2 = sum_2/N
integral = V*mean
errorest = V*sqrt((mean2 - mean*mean)/N)

Simulation of “unknown” probability distributions

Sometimes you know everything about a random process, except it’s too hard
to evaluate the resulting probability distribution analytically.

Example: a game of snakes and ladders: you know all the rules,
but what is the probability distribution of the number of moves in
a game?

One can simulate the process using random numbers and keep track of the
distributions of the quantities of interest.

This turns out to be mathematically equivalent to evaluating probability
integrals using the Monte Carlo method, where the n dimensions correspond to
all the random variables involved. It may be that n is very very large.

Example: Variability of time to sort card deck

If you have a randomly sorted deck of 52 cards, how many steps does it take
to sort them using a particular sorting algorithm? Find mean and standard
deviation.

Algorithm to find mean and std. dev. of sorting times:
initialize suml = 0, sum2 = 0
loop N times:
set up array of integers 1 to 52
shuffle it
call sort algorithm (which must tell you the number of steps,
nsteps)

suml += nsteps
sum2 += nsteps*nsteps
mean = suml/N
mean2 = sum2/N
stddev = sqrt((mean2 - mean*mean)/(N-1))

Storing distributions in histograms

Entries 1000
= F Mean 0.04097
60

50:
40
30
20

10

e A histogram is just an array of integers representing a frequency distribu-
tion, usually drawn as a bar chart.

e Each integer represents the number of times a particular thing happened.

e For a 1-d histogram of a continuous random number, the “thing that hap-
pened” is that the value of the random number fell in a particular range.
These ranges are called “bins”, and the division of the continuously dis-
tributed number into bins is called “binning”.

Simple 1-d histogram class

Note: ROOT, GSL, many other packages provide histogram functions, but just
to show how easy it is:

class SimpleHistol {

private:

vector<int> bins; // stores histogram contents
double xlow; // lower end of histogram range
double xhigh; // upper end of histogram range
public:

// set or reset the histogram range and number of bins
void Initialize(int nbin, double xlow_, double xhigh_) {

bins.clear();
bins.resize(nbin);
xlow= xlow_;
xhigh= xhigh_;

¥

// add 1 to the appropriate bin
int Fill(double x) {
if (x<xlow || x>=xhigh)
return O;
int ibin= int((x-xlow)/(xhigh-xlow)*bins.size());
bins[ibin] += 1;
return 1;

3

// get contents of bin i
int BinContents(int i) {
return bins[i];
}
}s

Example: time to sort card deck (revisited)

If you have a randomly sorted deck of 52 cards, how many steps does it take
to sort them using a particular sorting algorithm? Find the full probability
distribution.

Algorithm to find distribution of sorting times:

initialize histogram h

loop N times:
set up array of integers 1 to 52
shuffle it
call sort algorithm (which must tell you the number of steps)
h.Fill(nsteps)

print histogram contents

Simulation of known random distributions

So far, we’ve used a RNG which gives a uniform random number u in the range
[0,1).

Given such a number wu, it’s easy to get a number x that is uniform in [a,b):
x=a+ (b—a)u.

Likewise, it’s easy to get an integer ¢ in the range 0..(n-1): ¢ = int(u * n).

And it’s easy to get a boolean b with probability p for true, 1 — p for false:
b= (u<p).

Suppose you need a random number with an exponential probability distri-
bution, or some other distribution?

Inverse distribution function method

Given a uniform random number w in the range [0,1), we have

dP

Here P, is the integral of the probability density, called the “cumulative distri-

bution function” or simply the “distribution function”.” It gives the probability

that a given random number will be less than or equal to a given number.
Suppose we want a non-uniform random number x, with properties

dpP v N
Tl Pl = [i,

We can obtain that as follows:

=P, (u).

x

The proof is simple and pleasant, so I leave it as an exercise to the student.

Example: exponential distribution

The distribution function for the exponential distribution is easily inverted:

apP
e e Pylz)=1-—-¢"

P (u) = —log(1 — u)

x

Thus, x = —log(l — u) is an exponential random number with the desired
probability density. This can be verified by calculating dP/dx = (dP/du) -
(du/dx).

Rejection method

Another way to obtain dP/dx = f(x), less efficient, is to generate z uniformly
In Tmin < ¢ < Tmax, then generate a second random number p in [0,1). If

* Also called the “probability distribution function” in some texts, although this termi-
nology is easily confused with the probability density function (p.d.f.), especially since the
density function when drawn actually has the shape of the distribution of the probability.

p < f(2)/fmaz, Where frq. is the largest value f can have, then accept z,
otherwise generate a new x and p and try again.

f(x)

1.2

NN

0.8

0.6

0.4

0.2

-2 -1 0 1 2 3

=
w

Figure 2: Pairs of (z,p) random variables are rejected if outside the shaded
region.

Some pitfalls in using RNGs

e RNGs are really pseudo random numbers. They have a fixed sequence for
a given starting seed.

— Use a different seed if you want different random numbers each time
you run your program.

— Use the same seed if you want the same random numbers when you
re-run your program (e.g., for debugging a problem).

e RNGs have some number of bits of precision. Be careful not to ask for
more than that.

— E.g., if you have a lousy 16-bit RNG, don’t expect it to find events
with probability < 2716 no matter how long you run it.

— Good RNGs have 48 or more bits, but don’t try to “take apart” the
random number, like if (u<p) { u2= u/p; if (u2<p2) { ... }
else { ... } }else{ ... }

Assignment: Random variable resistor network

Suppose I set up 3 variable 1-kohm resistors connected to big knobs in the
hallway with a big sign saying “DO NOT ADJUST”. Every time a student
passes, s/he adjusts the knobs to a random place, uniformly between minimum
and maximum. Make the histogram of the total resistor network resistance if
one knob is in parallel with two knobs in series, as shown in the figure.

Figure 3: Schematic diagram of the “random knobs”.

	Simple Monte Carlo integration
	Integration over many dimensions
	Integration over complicated volumes
	How to get uniform random numbers
	Example: Mass of an ellipsoidal cloud
	Weighting techniques (change of variable)
	Example: Mass of an ellipsoidal cloud (revisited)
	Simulation of ``unknown'' probability distributions
	Example: Variability of time to sort card deck
	Storing distributions in histograms
	Simple 1-d histogram class
	Example: time to sort card deck (revisited)
	Simulation of known random distributions
	Inverse distribution function method
	Example: exponential distribution
	Rejection method
	Some pitfalls in using RNGs
	Assignment: Random variable resistor network

