
Class 8: Roots and minima, more C++, and
using external libraries

Overview
• Root-finding algorithms in 1-d and multiple dimensions

• Minima-finding algoritms in 1-d and multiple dimensions

• A little more C++: derived classes

• Two examples of external libraries for minimization: GSL and ROOT

Root-finding:
Finding a root of a function (1-d): Solve f(x) = 0 for x.

• Without using the derivative of f , root can be found by bisection.

• With the derivative f ′, root can be found using Newton’s method.

Finding root(s) of N functions of N variables: Solve f(x) = 0 for x.

• Newton’s method works here, generalized to N dimensions.

• A related but somewhat different problem: finding N-1 dimensional con-
tours or surfaces satisfying f(x) = 0, where f is a single function, or
(N-M)-dimensional contours where M functions are zero.

Numerical Recipes describes other algorithms, and gives lots of examples
and explanations.

Helping the algorithms get the right answer
Give the algorithm a good starting point.

For 1-d root-finders, provide a bracket for the root.

• The bracket is two numbers defining the interval in which to find the root.

• A good bracket (a, b) is one in which the function has opposite sign at the
two end: f(a) < 0 and f(b) > 0 or f(x) > 0 and f(b) < 0.

For the multi-dimensional case, bracketing isn’t feasible. The algorithms
generally need

• A good starting point x0 not too far from the root.

• An initial step size “hint” that is small enough not to overshoot the local
minimum, but large enough to see some change in the functions.
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Bisection algorithm
Shrink bracket until the root is pinned down, as follows:

Start with caller-provided bracket for the root (a, b), tolerance ε, and function
f .
Check sign(f(a)) 6= sign(f(b)).
Loop:

x← (a+ b)/2
y ← f(x)
If y has same sign as f(a), then

a← x

else
b← x

Repeat until |a− b| < ε

Newton’s method
Repeatedly “shoot for the zero,” using the approximation

f(x+ d) ' f(x) + f ′(x)d+O(f ′′d2) = 0

d = − f(x)
f ′(x)

Potential problems can occur when far from the root:

• Big overshoot if |f ′(x)| is small.

• Step in wrong direction if f ′(x) has wrong sign.

• Non-converging loop if |f ′(x)| gets shallower farther from the root.

(... Draw figures on board, insert in notes later ...)

Simple Newton’s algorithm
Start with caller-supplied f and f ′ functions, initial x, and tolerance ε.
Loop:

d← − f
f ′

x← x+ d

Repeat until |d| < ε.

Important note: ε should be small enough for your application, but no
smaller. Make sure it is large enough that x + ε is different from x in your
machine’s floating point representation.
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Smarter Newton’s algorithm
Use bracketing to protect against any craziness, bisect whenever a Newton’s
method step fails.

Start with caller-supplied f and f ′ functions, bracket (a, b), and tolerance ε.
Set initial x← (a+ b)/2.
Loop:

d← − f
f ′

xtry ← x+ d

Is xtry in range (a, b)?
If yes: x← xtry

If not: bisect range and try again
Repeat until |d| < ε.

See full example in Numerical Recipes (sec 9.4 in 2nd or 3rd ed.).

Multidimensional case
We have N functions Fi of N variables xj , and want to find the zeros.

There’s a great illustration in Numerical Recipes showing why this is hard
in general. (Fig. 9.6.1.) If you want to seek the nearest zero to some point,
Newton’s method should work.

Fi(x+ d) = Fi(x) +
N∑
j=1

∂Fi
∂xj

dj +O(d2).

In matrix notation,

F (x+ d) = F (x) + J · d+O(d2),

using the Jacobian matrix

J = [Jij ] ≡
[
∂Fi
∂xj

]
.

To find the root, repeatedly solve

J · d = −F .

Update x until convergence |d| < ε.

Numerical Recipes describes a method for “backtracking” if a multi-dimensional
Newton’s method step makes things worse instead of better.

Minimization
Finding a local minimum: find value for which f(x) or f(x) is locally minimized.
(To find maxima, just minimize −f(x).)
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I will describe one particularly pretty 1-d minimization algorithm that re-
quires no calculation of derivatives and that is guaranteed to find a local mini-
mum.

There are faster algorithms that use derivatives, for 1-d and multi-d prob-
lems, including ones that only need the user-supplied function. (These algo-
rithms estimate the derivatives themselves.)

I’ll describe the general properties of these, and then we will talk about how
to use pre-written implementations.

Golden section search
Similar to bisection, except it starts with a triplet of values (a, b, c) such that f
at the middle point is less than at the two ends: f(b) < f(a) and f(b) < f(a).

(... figure ...)
General outline of algorithm:

Start with (a, b, c), function f , and tolerance ε
Loop:

Pick a new point x and try it (*).
If it’s lower than the current lowest point, then

use it as the new center point, use the old b as edge of bracket
else

adjust the end of the bracket
until |c− a| < ε.

(*) The point x is chosen in the range (a, b) or (b, c) such that the updated
triplet will have the same proportions as the original triplet. The ideal ratio
turns out to be the golden mean.

More general minimization
Near minimum, to 2nd order,

f(x+ d) = f(x) +
∑
j

∂f

∂xj
dj +

1
2

∑
i,j

∂2f

∂xj∂xi
didj

= c+ b · d+
1
2
d A d

Terminology: The matrix A is called the Hessian. The vector b is the gradient.

∇f = A · d− b

At an extremum, ∇f = 0. So we just solve

A · d = b.

Essentially the same algorithm as Newton’s method works if we know A and b
well enough.
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Types of minimization algorithms
Various algorithms differ in how they guard against crazy steps and whether
they need the caller to provide a function for the derivatives or Hessian.

• If we have functions for the 2nd derivatives (A) and 1st derivatives, we
can use an algorithm that uses them.

• If we have just the first derivatives, we need an algorithm that estimates
the Hessian using the derivatives.

• If we have only the function, we need an algorithm that estimates both
the derivatives and the Hessian using finite differences.

What’s common among the algorithms:

• All algorithms ultimately seek ∇f = 0.

• All need an initial starting point x not too far from the minimum being
sought.

• A step size parameter tells the algorithm what steps are reasonable for
doing finite differencing and making the first few trial steps.

Numerical Recipes has many different algorithms.
More importantly, there are existing libraries for minimization of functions.

Break

A little more C++: derived classes
C++ lets you define a new class based on an existing class, like this:

class NewClass : public BaseClass {
// usual class definition

};

This defines NewClass as having all the same data and member functions as
BaseClass, with the following enhancements:

• Add any new data members defined in NewClass.

• Add any new function members declared in NewClass.

• If a virtual function member declared in BaseClass is redeclared in NewClass,
the hidden virtual function pointer point to the new function for NewClass
objects.

• If you start the definition with class NewClass : private BaseClass,
then the base class functions will be made private in the derived class,
even if they were public in BaseClass.

This is not impossible in C, just clunky
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C++ C
class MyBase {

int i;
public:

virtual void set_i(int ii);
};

class MyClass2 : public MyBase {

int j;
public:

virtual void set_i(int ii);
virtual void set_j(int jj);

};

struct MyBase_s {
int i;

void (*set_i)(int ii);
};

struct MyClass2_s {
strict MyBase_s base;
int j;

void (*set_j)(int jj);
};

C++ constructor sets virtual func-
tion table for new MyClass2 ob-
ject’s set_i and set_j to the correct
addresses for MyClass2::set_i() and
MyClass2::set_j().

For any new MyClass2_s variable
made, C programmer has to set
the values of .set_j and .base.set_i
pointers to point to the right func-
tions, and i field must be accessed as
base.i.

Example of minimizer in C using object-oriented
approach: GSL
See very nice documentation in GNU Scientific Library Reference Manual, sec-
tion titled “Multidimensional Minimization”. http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-
Minimization.html

Things to note about how they write documentation:

• The especially nice write-up of the problem being solved and the algorithm
properties.

• The especially nice write-up of how to use the functions.

• The really useful examples subsection.

Things to note about the API:

• It’s C, but object oriented, using pointers to structs and functions.

Example of a minimizer in C++: ROOT
The best documentation from the authors is at http://root.cern.ch/root/html526/TMinuitMinimizer.html

• It’s very detailed at the low level, and has some high level overview.

• However, there are some critical things missing at the middle level, such
as a clear statement of how to make it actually start minimizing.
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– It turns out one of the 49 functions defined for the class is named
Minimize(), and that’s the one to make it go, after setting up using
SetFunction() and SetVariable().

• On their website, I found lots of examples of fitting, but none of pure
minimization, so I wrote one for you. (See link in course web page.)

– The example finds the minimum of the function f(α, x, y) = −α−1/2e−(1+x2+y2)/(2α2).

Assignment (easy?)
Get the ROOT examples from the course web page to compile and run.
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