
Class 6: Numeric ODE integrators; API design
and testing

The basic n-dimensional ODE equation
y′ = f(y, t)

where t is the independent variable, y are the dependent variable, and underlines
denote vectors.

This looks like a first-order ODE, but it can represent a higher order ODE
with a simple “chain” of variables. E.g., y′′ = −ω2y can be implemented by
defining y1 ≡ y, y2 ≡ y′, and

f

(
y1

y2

)
=

(
y2

−ω2y1

)
We can also eliminate explicit t dependence by making it one of the elements of
y.

Note: I’m going to drop the underlines now, but y and f are still vectors.

Numerical solutions
• We want to find approximate numeric solutions of some accuracy without

already knowing the analytic solution.

• For initial value problems, we do this by integrating the ODE in discrete
steps in t. The step size is conventionally called h.

• The easiest starting point is the Taylor series.

Euler 1st order:

y(t + h) = y(t) + y′(t)h +O(y′′h2/2)

yn+1 = yn + f(yn)h

2nd order

y(t + h) = y(t) + y′(t)h +
1
2
y′′(t)h2 +O(y′′′h3/6)

yn+1 = yn + f(yn)h + (∗ ∗ ∗)h2/2

*** If we require that only the function f be specified in analytic form, not its
derivatives, then y′′ = f ′ has to be estimated from previous or future values of
f in some clever way.

1

Heun’s method: 2nd order
yn+1 = yn + (f(yn) + f(ỹn+1))h/2

where ỹn+1 = yn + f(yi)h is the Euler’s method approximation for yn+1.
This is equivalent to

yn+1 = yn + f(yn)h +
f(ỹn+1)− f(yi)

h
· h

2

2

Fourth-order Runge-Kutta

y(t + h) = y(t) +
1
6
(f1 + 2f2 + 2f3 + f4)h

where
f1 = f(yn)

f2 = f(yn + f1h/2)

f3 = f(yn + f2h/2)

f4 = f(yn + f3h)

Programming for reusability
General principles:

• Don’t embed an algorithm everywhere you need it. That forces you to
rewrite it repeatedly.

• Write once, reuse often!

• This is a little more work, but usually pays for itself quickly.

• The little bit more work: you have to design an API for your algorithm.

An API for an ODE solver
The API can be very simple: just one function to advance one step.

The ODE step function takes three arguments:

1. The starting value of y. (A vector<double>.)

2. The function for f . (A pointer to a function.)

3. The size of the step h.

There are two options for how to return the updated value:

• Actually return the new value.

• Update the existing y “in place” (pass by reference).

The f function takes a little more thought.

2

How to define the derivative function?
The straight-forward way: pass-by-value, return a value:

vector <double> f(vector<double> y);

Pass-by-reference (in and out):

void f(const vector<double> &y, vector<double> &f_out);

The second way is up to a factor of 2 faster because it requires less copying
of data between memory locations.

API to use in today’s assignment
typedef void f_vect_vect_t(const vector<double> &y,

vector<double> &f_out);

void rk4step(vector<double> &y,
f_vect_vect_t * fptr,
double h);

A note on “name space”
Good “namespace” citizenship:

• Choose names unlikely to be used elsewhere. (E.g., “f” would be a bad
name for a globally-defined function or type.)

• C++ namespaces were designed to help with this.

Testing
• Write test cases for your functions.

• You need a test independent from your main application!

– Don’t be fooled into thinking you can always recognize a wrong an-
swer when you see it. If you already knew the answer to your main
problem, you wouldn’t be writing this program in the first place.

Test case: oscillators and orbits
We know the solutions to y′′ = −ω2y and to ~r′′ = −GM~r/|r|3. Let’s test the
Euler ODE solver with that case.

Code: see course web page.

3

http://www.phys.ksu.edu/personal/gahs/phys707-prog

Results of test
Position vs time:

Figure 1: Results of the test program for Euler integration of the simple har-
monic oscillator equation. Note how points spiral out.

It’s spiralling outward. Energy is not being conserved!

What went wrong?
Momentarily using the underline notation again, the vector y = (y1, y2) = (y, y′)
is a vector in phase space. It is supposed to follow a closed path, but the finite
steps in the 1-st order Euler ODE solver don’t allow that.

4

Figure 2: Addition of a finite correction perpendicular to a vector.

Symplectic ODEs
The harmonic oscillator and orbit problems, and many others in science in
engineering, are examples of solutions of Hamiltonian equations:

p′ = −∂H

∂q
, q′ =

∂H

∂p

The solutions should conserve H. The Euler and Runge-Kutta schemes don’t.

Numerical symplectic ODE solvers
The simplest (and very common) cases arise from H = T (v) + V (x), so that
x′ = f(v) and v′ = g(x).

A 1st-order symplectic version of Euler’s equation:

vn+1 = vn + g(xn)h

xn+1 = xn + f(vn+1)h

A beautiful 2nd-order symplectic method:

xn+1/2 = xn + f(vn)h/2

vn+1 = vn + g(xn+1/2)h

xn+1 = xn+1/2 + f(vn+1)h/2

Note these symplectic methods need to distinguish between x and v.

5

Assignment
• Implement the 2-nd order symplectic integrator and the 4-th order Runge-

Kutta integrator.

• Test them with oscillator and orbit equations.

• You can reuse as much of the code on the course web page as you like.

6

	The basic n-dimensional ODE equation
	Numerical solutions
	2nd order
	Heun's method: 2nd order
	Fourth-order Runge-Kutta
	Programming for reusability
	An API for an ODE solver
	How to define the derivative function?
	API to use in today's assignment
	A note on ``name space''
	Testing
	Test case: oscillators and orbits
	Results of test
	What went wrong?
	Symplectic ODEs
	Numerical symplectic ODE solvers
	Assignment

