Class 5: C++ part III, and using APIs

Pointers

Pointers are just values that indicate memory addresses and the type of data
that the programmer thinks is there.

Declaration syntax: type * pointer wvariable;
Dereference operator (get the value at this address): * pointer wvariable;

Reference operator (get the address of a variable as a pointer): & vari-
able;

“Syntactic sugar” for pointers to structs

Suppose bptr is a pointer to a structure:
struct MyBalls_s * bptr;
Then I could access the fields in the structure like this:
(*bptr) .x = (*¥bptr).x + (xbptr).u * dt;
The -> operator is “syntactic sugar” to make this prettier:
bptr->x = bptr->x + bptr->u * dt;

Formally: pointer -> fieldname is equivalent to (x pointer). fieldname

Pointers to functions

If £ is a function, then &f is a pointer to its address. Example:

#include <iostream>

double square(double x)
{ return x*x; }

double cube(double x)
{ return x*square(x); }

int main() {
using namespace std;
double (*fptr) (double); // fptr declared as type "double (*)(double)"

double t=5.0;

fptr= □ // note no ()

cout << "square of " << t << " is " << (xfptr) (t) << "\n";
fptr= &cube;

cout << "cube of " << t << " is " << (xfptr) (t) << "\n";

Object oriented programming in C

You can do object oriented programming using structs in C.
This is what we did in the “bounce2” exercise last class.

You can even put pointers to functions in the data fields to make your
objects more abstract.

X windows and Microsoft Windows and many other applications and li-
braries are written this way.

That’s pretty much all there is to object oriented programming.

C++ adds some nice “syntactic sugar”.

Equivalents in C-+-+: “syntactic sugar” for “mem-
ber functions”

C++ C
struct MyStruct_s { struct MyStruct_s {
int i; int i;
void set_i(int ii); };
}; void MyStruct_set_i(int ii);
void test() { void test() {
struct MyStruct_s s; struct MyStruct_s s;
s.set_i(42); MyStruct_set_i(&s, 42);
} }

Equivalents in C++: “syntactic sugar” for “virtual
functions”

| Crt C

struct MyStruct_s { struct MyStruct_s {
int 1i; int i;
virtual void set_i(int ii); void (*set_i) (int ii);
}; };
void test() { void test() {
struct MyStruct_s s; struct MyStruct_s s;
s.set_i(42); (x(s.set_1i)) (42);
} }

The above example is just to give you the idea, and is slightly incomplete
because I omitted the initialization of the function pointer, and because I don’t
use a “virtual function table” like most C++ compilers.

C-+-+ class type

This is just like a struct with the addition of public, protected and private
flags for the members:

class MyClass {
private:
int 1i;
public:
virtual void set_i(int ii);

};

void test() {
MyClass c;
c.set_i(42); // OK
c.i= 45; // compile-time error

}

Constructors and Destructors

A constructor is a function that automatically gets run each time a variable of
a particular class type is made. It has the same name as the class, and doesn’t
have a declared type, not even void.

A destructor is a function that automatically runs each time a variable of
class type is deleted, e.g., when the block of code in which it was made ends.

class MyClass {

public:
MyClass(); // constructor
MyClass(int i); // constructor with 1 argument
“MyClass(); // destructor

Dynamic memory allocation in C++

Sometimes you don’t know in advance how many objects will need to make.
(E.g., if the number of balls can be specified by the user at run time.) A vector
is one way of handling this. Another way is the new operator:

MyClass *cptrl;

MyClass *cptr2;

cptrl= new MyClass; // runs default constructor

cptr2= new MyClass(42); // runs constructor with 1 int argument

This allocates memory for the new object and runs the constructor.
You have to explicitly free the memory when you’re done with it:

delete cptri;

Other important C+-+ features

Significant:

Compiler features: templates, exceptions
Standard library features: file I/O, string stream I/0

Widely appreciated:

Compiler: function overloading, operator overloading, namespaces

Break
What is an API

API: Application Programming Interface
e This basically just means the functions “you” can call in an external library.

e People used to talk loosely of “the user” calling these functions, meaning
“the user of the library”.

e It’s considered more correct to use the word “user” to mean the person
sitting in front of the computer interacting with some application program.

e [t’s really some part of a program calling these functions, not “you” or “the
user”. Hence the term API.

Linking
e The compiler can automatically link to the standard libraries for you.

e If you want additional libraries, you have to tell the compiler.

— For gee, use option -L (directory) to tell it where to find the library
files, and -1 (name) to tell it which library files.

— For VC++, set LIB environment variable and/or give the names of
the libraries on the command line.

Linking to the ROOT package libraries

ROOT is a package of tools useful for analyzing and plotting data.

e You can also use its graphics for other things.

Compilation recipes:
e VC:

C:\ROOT\BIN\thisroot.bat
set INCLUDE=Y%INCLUDEY;%R0O0TSYS%\include
cl /EHsc (filename.cc) C:\ROOT\LIB\lib*.lib

e GCC (linux):
source /path-to-root/bin/thisroot.sh
gt+ ‘root-config --cflags --1libs‘ (filename.cc) -o exename
Example: 2-d bouncing ball using ROOT graphics

The ROOT API is too complicated to summarize in class, although the docu-
mentation is not bad.
There is a link to an example application on the course web page.

References

[ROOT] http://root.cern.ch/

http://root.cern.ch/

	Pointers
	``Syntactic sugar'' for pointers to structs
	Pointers to functions
	Object oriented programming in C
	Equivalents in C++: ``syntactic sugar'' for ``member functions''
	Equivalents in C++: ``syntactic sugar'' for ``virtual functions''
	C++ class type
	Constructors and Destructors
	Dynamic memory allocation in C++
	Other important C++ features
	Break
	What is an API
	Linking
	Linking to the ROOT package libraries
	Example: 2-d bouncing ball using ROOT graphics
	References

