
Class 5: C++ part III, and using APIs

Pointers
Pointers are just values that indicate memory addresses and the type of data
that the programmer thinks is there.

Declaration syntax: type * pointer_variable;

Dereference operator (get the value at this address): * pointer_variable;

Reference operator (get the address of a variable as a pointer): & vari-
able;

“Syntactic sugar” for pointers to structs
Suppose bptr is a pointer to a structure:

struct MyBalls_s * bptr;

Then I could access the fields in the structure like this:

(*bptr).x = (*bptr).x + (*bptr).u * dt;

The -> operator is “syntactic sugar” to make this prettier:

bptr->x = bptr->x + bptr->u * dt;

Formally: pointer -> fieldname is equivalent to (* pointer). fieldname

Pointers to functions
If f is a function, then &f is a pointer to its address. Example:

#include <iostream>

double square(double x)
{ return x*x; }

double cube(double x)
{ return x*square(x); }

int main() {
using namespace std;
double (*fptr)(double); // fptr declared as type "double (*)(double)"

1

double t=5.0;

fptr= □ // note no ()
cout << "square of " << t << " is " << (*fptr)(t) << "\n";
fptr= &cube;
cout << "cube of " << t << " is " << (*fptr)(t) << "\n";

}

Object oriented programming in C
• You can do object oriented programming using structs in C.

• This is what we did in the “bounce2” exercise last class.

• You can even put pointers to functions in the data fields to make your
objects more abstract.

• X windows and Microsoft Windows and many other applications and li-
braries are written this way.

• That’s pretty much all there is to object oriented programming.

• C++ adds some nice “syntactic sugar”.

Equivalents in C++: “syntactic sugar” for “mem-
ber functions”

C++ C
struct MyStruct_s {

int i;
void set_i(int ii);

};

void test() {
struct MyStruct_s s;
s.set_i(42);

}

struct MyStruct_s {
int i;

};
void MyStruct_set_i(int ii);

void test() {
struct MyStruct_s s;
MyStruct_set_i(&s, 42);

}

Equivalents in C++: “syntactic sugar” for “virtual
functions”

C++ C

2

struct MyStruct_s {
int i;
virtual void set_i(int ii);

};

void test() {
struct MyStruct_s s;
s.set_i(42);

}

struct MyStruct_s {
int i;
void (*set_i)(int ii);

};

void test() {
struct MyStruct_s s;
(*(s.set_i))(42);

}

The above example is just to give you the idea, and is slightly incomplete
because I omitted the initialization of the function pointer, and because I don’t
use a “virtual function table” like most C++ compilers.

C++ class type
This is just like a struct with the addition of public, protected and private
flags for the members:

class MyClass {
private:

int i;
public:

virtual void set_i(int ii);
};

void test() {
MyClass c;
c.set_i(42); // OK
c.i= 45; // compile-time error

}

Constructors and Destructors
A constructor is a function that automatically gets run each time a variable of
a particular class type is made. It has the same name as the class, and doesn’t
have a declared type, not even void.

A destructor is a function that automatically runs each time a variable of
class type is deleted, e.g., when the block of code in which it was made ends.

class MyClass {
public:

MyClass(); // constructor
MyClass(int i); // constructor with 1 argument
~MyClass(); // destructor

}

3

Dynamic memory allocation in C++
Sometimes you don’t know in advance how many objects will need to make.
(E.g., if the number of balls can be specified by the user at run time.) A vector
is one way of handling this. Another way is the new operator:

MyClass *cptr1;
MyClass *cptr2;
cptr1= new MyClass; // runs default constructor
cptr2= new MyClass(42); // runs constructor with 1 int argument

This allocates memory for the new object and runs the constructor.
You have to explicitly free the memory when you’re done with it:

delete cptr1;

Other important C++ features
Significant:

Compiler features: templates, exceptions
Standard library features: file I/O, string stream I/O

Widely appreciated:

Compiler: function overloading, operator overloading, namespaces

Break

What is an API
API: Application Programming Interface

• This basically just means the functions “you” can call in an external library.

• People used to talk loosely of “the user” calling these functions, meaning
“the user of the library”.

• It’s considered more correct to use the word “user” to mean the person
sitting in front of the computer interacting with some application program.

• It’s really some part of a program calling these functions, not “you” or “the
user”. Hence the term API.

Linking
• The compiler can automatically link to the standard libraries for you.

• If you want additional libraries, you have to tell the compiler.

– For gcc, use option -L (directory) to tell it where to find the library
files, and -l (name) to tell it which library files.

– For VC++, set LIB environment variable and/or give the names of
the libraries on the command line.

4

Linking to the ROOT package libraries
ROOT is a package of tools useful for analyzing and plotting data.

• You can also use its graphics for other things.

Compilation recipes:

• VC:

C:\ROOT\BIN\thisroot.bat
set INCLUDE=%INCLUDE%;%ROOTSYS%\include
cl /EHsc (filename.cc) C:\ROOT\LIB\lib*.lib

• GCC (linux):

source /path-to-root/bin/thisroot.sh
g++ ‘root-config --cflags --libs‘ (filename.cc) -o exename

Example: 2-d bouncing ball using ROOT graphics
The ROOT API is too complicated to summarize in class, although the docu-
mentation is not bad.

There is a link to an example application on the course web page.

References

[ROOT] http://root.cern.ch/

5

http://root.cern.ch/

	Pointers
	``Syntactic sugar'' for pointers to structs
	Pointers to functions
	Object oriented programming in C
	Equivalents in C++: ``syntactic sugar'' for ``member functions''
	Equivalents in C++: ``syntactic sugar'' for ``virtual functions''
	C++ class type
	Constructors and Destructors
	Dynamic memory allocation in C++
	Other important C++ features
	Break
	What is an API
	Linking
	Linking to the ROOT package libraries
	Example: 2-d bouncing ball using ROOT graphics
	References

