
Mid-term Exam

Due at the beginning of class Tuesday, Oct. 23

Instructions:

• 120 points are possible on this exam, so there are 20
points extra credit

• Unlike the homework, this exam is not to be discussed
with your classmates (or other professors, students, post-
docs, etc.). If you have questions, feel free to bring them
to me, and I will do my best to answer them without
telling you how to do the problem. You may use any
other resource you like, but cite anything you didn’t do
yourself. If you use Mathematica, say so; if you pull an
answer off the web, say so; if you use a result from a book
or class, say so.

• Remember to write down everything you can about a
problem! Even if you can’t find the solution because of
time or difficulty, you can write down what you think
needs to be done and what physics you expect to result.

• Any plots, discussion, or physical insight beyond what is
asked for has a good chance of becoming extra credit ...

————————————————————–

(25 pts) 1. A particle of mass m sees the potential

V (x) = V0ℓ [δ(x) + δ(x− a) + δ(x− 2a)]

where all of the constants are positive and real.

(a) Discuss this system qualitatively. Does it possess any
symmetries? Do you expect it to have bound states?
What behavior do you expect for R and T? Are there
any resonances? If there are resonances, sketch what
you think T will look like and be semi-quantitative when
placing the resonances.

(b) Calculate R and T . There will be a lot of algebra, so
careful organization will help considerably. Do not try
to simplify the results too far — there’s not much to be
gained by doing so.

(c) Assuming ~ = m = 1, ℓ = a = 1, and V0 = 5, plot
T and discuss it physically. Which resonances describe a
metastable state with the longest lifetime? Do it support
your predictions from (a)?

(d) We now add to this potential the following

V (x) = V0ℓ [δ(x− 3a) + δ(x− 4a) + δ(x− 5a)] .

Calculate R and T for the total potential with six delta
functions. Plot T and discuss it physically, especially
mention the connection to your results from (b) and (c).
Use the same parameters as in (c).

(25 pts) 2. The Hamiltonian for some system is given by

H = ~Ω









1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1









with Ω a positive, real constant.
NOTE: Computing with Mathematica or any other similar

software/device is neither acceptable nor necessary for this
problem, so make sure that your work clearly shows the steps
you follow. If you cannot see how to do it by hand, then go
ahead and use Mathematica (or your favorite substitute), but
expect a grade penalty. (If I don’t see at least the main steps
in your derivation, then I will assume you used Mathematica!)

(a) Find the eigenstates for this system and their energies.
Identify the ground state and label each excited state in
increasing energy order as usual.

(b) We now introduce three operators

A = a









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









B = b









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









C = c









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









Under what conditions could these operators represent
physical observables? Be specific. For the remainder of
this problem, assume these operators do represent phys-
ical observales. Can you construct simultaneous eigen-
states for any combination of H, A, B, and C? Why
or why not? If you can, do so. (You need not use this
common basis for the questions that follow, however!)

(c) The system is initially in its ground state and A is mea-
sured. What values can be obtained and with what prob-
abilities?

(d) Assume that the measurement in (c) yielded −a. Some
time t later, the energy is measured. What values can be
obtained and with what probabilities?

(e) Instead of the energy as in (d), B is measured at some
time t for the system that yielded −a in (c). What values
can be obtained and with what probabilities?



(25 pts) 3. Consider a one-dimensional simple harmonic os-
cillator.

(a) Construct a linear combination of the states |0〉 and |2〉
such that ∆X is as small as possible.

(b) Is this minimum ∆X smaller than for the state |0〉 by
itself? Explain how this is possible using the coordinate
space wave functions. Sketches or plots would be highly
desirable.

(c) Assume your state from (a) is the initial state at t = 0.
What is the state vector for t > 0? Describe its behavior.

(d) Find ∆X(t) for your state from (c) and plot it. Is the
result consistent with your discussion of the behavior in
(c)? Explain why or why not.

(25 pts) 4. Consider an infinite square well with a barrier
(figure not to scale):

−a −a/2 a/2 a

V0

(a) Calculate the lowest two energy eigenstates and energies.
You need only graphically indicate the solution of the
transcendental equations you obtain. (You might want
to take advantage of any symmetry present.) Sketch or
plot both wave functions.

(b) At what value of β =
√

2mV0/~2 a
2

does the energy of
the lowest state move above the barrier? How about for
the first excited state? Give numerical values.

(c) How do the energies of the two states in (a) behave as a
function of V0? You can be qualitative here, but indicate
the basic steps of any calculation or solution [using, for
instance, your graphical solution from (a)] and be clear
on the physical explanation. You can be quantitative in
the limits V0 → ∞ and V0 → 0, right?

(d) Suppose we know that at t = 0, the particle is localized
on the left side of the barrier assuming β is larger than
both limits from (b). Using just the lowest two states,
write down a total wave function ψ(x, 0) that most closely
describes this case. Plot your resulting wave function.

(e) Find ψ(x, t) for the initial condition from (d) and describe
the behavior of the system as a function of time. How
long does the particle take to become maximally localized
on the right side of the barrier?

(20 pts) 5. A free particle of mass m has the following wave
function at t = 0:

ψ(x, 0) = α1N1e
ik1xe
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You should assume that all constants are positive and real.
You should also assume that:

|x2 − x1| ≫ ∆1 |x2 − x1| ≫ ∆2 x2 > x1.

(a) Sketch a |ψ(x, 0)|2 consistent with the above assumptions
and point out in your sketch what role each assumption
plays.

(b) Determine the condition satisfied by α1 and α2. Be sure
to clearly indicate any approximation you might make
and justify it.

(c) Find ψ(x, t). Is it normalized for all times? (Your answer
to this question should require no computation!)

(d) Assuming α1 = α2, discuss the evolution of these wave
packets with time from t = 0 to very large times. Be sure
to consider k1 ≪ k2, k1 ≈ k2, and k1 ≫ k2. What role
does the width ∆j of each wave packet play in this evo-
lution? Your answers should involve 〈X〉(t) and ∆X(t)
of each wave packet.

(e) How does your answer to (d) change if α1 and α2 do
not have the same magnitude? How will |ψ(x, t)|2 look
different?

(f) What role does ϕ play? In particular, what is its impact
on the evolution of this state? Illustrations for a few ϕ
would be helpful.


