Homework 9
Due in class Nov. 6

1. Consider the following:

(a) A particle of mass m is in the ground state of the poten-
tial
V(z) = =Vpld(x).

Assume V[ and ¢ are positive, real constants. At ¢t =0
the strength 1V, of the potential is suddenly doubled.
This process happens very fast — approximately instan-
taneously. Calculate the probability that long after ¢ = 0
the system is in the ground state of the new potential.
How fast must the change take place for this “instanta-
neous” assumption to be valid?

Assume now that the particle is in an infinite square well
of width a. The left wall is suddenly moved such that
the width of the well becomes 2a. Without doing any
calculations, argue which energy is most likely to be mea-
sured long after the wall was moved. How fast must the
change take place for this “instantaneous” assumption to
be valid?

For the infinite well in (b), assume that the well’s width
is suddenly halved. Can you apply an analysis similar
to (a) and (b)? Describe what you think would happen
physically.

2. A particle in an infinite square well of width a is subjected
to the following perturbation

N 2
V(z,t)=Q <7) e~ sin wt.
a
Take all constants to be positive and real.

(a) If the system is initially in the ground state, to what final
states are transitions possible in first order perturbation
theory? And if it’s initially in the first excited state?

If the system is initially in the ground state, to what final
states are transitions possible in second order perturba-
tion theory?

Using first order perturbation theory, calculate the tran-
sition probabilities from the ground state to the two low-
est states you identified in (a). If you wanted to maximize
the population of the lower of these two states and min-
imize the population of the upper one, how would you
choose the parameters for V7

Assume now that the system is initially in the middle
state from (a) and (c). Using first order perturbation
theory, calculate the transition probabilities back to the
ground state and to the highest state from (a). If you
wanted to maximize the population of the ground state
while minimizing the population of the highest state, how
would you choose the parameters for V7

3. A hydrogen atom is placed in a weak, static electric field
of magnitude &. The resulting Hamiltonian can be written
as

H = |1s)E15(1s| + |25) E24(2s| + |2p) Eap (2p]
+ dis,2p€0[[15) (2] + [2p) (1s]]
+ das,2p€0[|25) (2] + |2p) (25]].

Assume all constants are positive and real. The dipole matrix
elements d; ; are defined as

d; j = (ildlj).

Note: You may use atomic units for this problem: i = m, =
e=1.

(a) Find the matrix representation of H in the

{|1s),]2s),|2p)} basis. Is your H Hermitian?

(b) Find the eigenenergies and eigenstates for this Hamilto-
nian approximately using perturbation theory. Take your
calculations to the lowest non-vanishing order. Clearly
define both the unperturbed Hamiltonian and the per-
turbation.

Plot the eigenenergies you found in (b) as a function of
an appropriate perturbation parameter. For what values
of this parameter are your energies valid?

At ¢t = 0, the system is in the state |2s). Based on your
approximate eigenstates from (b), what energies can be
measured at a later time ¢ and with what probabilities?

Let’s again assume the system is in the state |2s) at ¢t = 0.
Now, though, the perturbation

V= A5167(£)2 cos(wt)

is applied. All constants here are positive and real, and
you may take w = % in atomic units. At ¢ — oo, what
energies can be measured and with what probabilities?
Would your answer change if &, = 07 What would it be?
Identify the origin of any differences.

4. A delta function potential is actually not a bad model
for the H™ atom: both have only one bound state and the
potential between the “outer” electron and H is short ranged
like the delta function. So, let’s explore this model a little,
but reduced to 1D for simplicity.

When working with electrons in atoms, it’s handy to use
atomic units. In these units, A=m.=e=1. So, H™ is repre-
sented by the Hamiltonian (in atomic units)

1 d?
Hy=—-— —rd(x
0 2 dz? (z)
where k is a real positive number. This Hamiltonian describes
the motion of the electron in the presence of an H atom. We
will expose our H™ to a laser pulse whose electric field is given
by

E(t) = Eoe™ ) coswot.



The perturbation felt by the H™ is thus

in the dipole approximation. Since there is only one bound
state with energy

the only possible transitions are to the continuum — which
frees the electron. This process is known as ionization.

(a) What symmetry should the ground state wave function
have? Find the bound state wave function explicitly.

(b) We know that evaluating the matrix elements in pertur-
bation theory is simpler if we can use symmetry. So, let’s
construct continuum states for Hy with the highest sym-
metry possible. In particular, assume the following forms
for the continuum states:

e |2 Jeos(kz+¢°) x <0
Vb(e) = wk {cos(kx —¢°) x>0’
orn |2 Jsin(kz+¢°) <0
VE(@) = wk {Sin(kz —¢°) >0’

where the subscript E indicates these are energy eigen-
states, and the superscript e and o indicates the even
and odd solutions, respectively. The constant prefactor
is required to energy normalize these states. Verify that
these states are indeed even and odd. Calculate ¢¢ and

¢°.

(¢) Using first order perturbation theory, calculate the ion-
ization probability P(E) for our model H™ as a function
of energy. Plot P(E) as a function of energy for w < Fj,
w =~ FEy, and w > Fy. Discuss your results physically,
and make sure to compare the results for these different
w. In an experiment, this spectrum is exactly what you
would measure if you collected all ionized electrons and
measured their kinetic energy.

(d) The total ionization probability is found be integrating
P(E) over all allowed energies (because P(FE) is actu-
ally a probability density, like [¢(z)]?). Find the total
ionization probability for the three cases you plotted in
(¢) (you may find numerical integration useful here). For
what values of &y are your results valid?



