
Homework 7

Due in class Oct. 16

From Griffiths: Prob. 2.42
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1. Field emission oc-
curs when an electron
is pulled from a metal
surface by a strong
electric field E0. This
process can be mod-
eled by the poten-
tial U(x) in the fig-
ure. The electron
is bound inside the
metal, x < 0, with
energy E. The work
function of the metal
φ is the energy required to extract an electron at the Fermi
energy EF , i.e. the least amount of energy that will free an
electron in the absence of an electric field. Electrons with
lower energies, however, can also tunnel out.

(a) Based on qualitative arguments, what total energy do
you expect most electrons will have upon leaving the
metal?

(b) Quantitatively estimate the tunneling probability as a
function of energy.

(c) Plot your result from (b) and briefly discuss it physically.

2. So far in this class, we have considered wavepackets of
free particles, wavepackets in an infinite square well, and
wavepackets scattering from various 1D potentials. In this
problem, we will consider the behavior of a wavepacket in an
SHO. Pay special attention to how this wavepacket behaves
compared to the others we have studied so far...

Can we construct quantum states of an SHO whose expec-
tation values mimic the classical results? The answer is yes,
and they are called “quasi-classical” or “coherent” states. To
do so, we first note that the classical results can be written
as (β =

√

~/mω):
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(By the way, is there any problem with having an ~ in a
classical expression like this?)

(a) Using the Heisenberg equation of motion for the matrix
element 〈a〉(t) = 〈ψ(t)|a|ψ(t)〉 (with a the lowering oper-
ator),

i~
d

dt
〈a〉(t) = 〈[a,H]〉(t),

find 〈a〉(t). Similarly, find 〈a†〉(t), and thus 〈X〉(t) and
〈P 〉(t). Note that it is necessary to have 〈a〉(0) = α0 to
obtain agreement with the classical results.

(b) By requiring the mean value of H to be the same as the
classical total energy using x(t) and p(t) above, show that

〈a†
a〉(0) = |α0|2.

Based on this relation, what does |α0|2 represent physi-
cally?

(c) Introducing the new operator

b = a − α0

show that we must have

a|ψ(0)〉 = α0|ψ(0)〉

in order to satisfy the conditions 〈a〉(0) = α0 and
〈a†

a〉(0) = |α0|2. (HINT: Evaluate 〈b†
b〉(0).)

(d) Find |α〉 = |ψ(0)〉, the eigenket of a assuming

|α〉 =

∞
∑

n=0

cn(α)|n〉,

i.e. find the expansion coefficients cn(α). The state |α〉
is exactly the coherent state we sought.

(e) For an oscillator in the coherent state |α〉, what values
of energies can be obtained and with what probability?
Which energy is most likely?

(f) Calculate |α(t)〉. Is this still an eigenstate of a? If so,
what is its eigenvalue? If a were measured, what results
could be obtained and with what probabilities?

(g) Calculate ∆X(t), ∆P (t), and ∆X(t)∆P (t) for |α(t)〉.
Contrast the behavior of this wavepacket in a SHO with
the free Gaussian wavepackets you’ve worked with so far.

(h) Using the relation (where |0〉 = |n = 0〉)

|α〉 = e−
|α|2

2 eαa
†

e−α∗
a|0〉,

find ψα(x) = 〈x|α〉. HINT: Rewrite a and a
† in terms of

the operators X and P , then put everything in the {|x〉}
representation. You might need the following relations:

〈x|e−iλ P

~ = 〈x− λ|
eAeB = eA+Be

1

2
[A,B]

where λ is a real constant and A, B are operators. (e−iλ P

~

is called a translation operator.) Plot the probability
density |ψα(x)|2 for two choices of α.

(i) Using your result from (f), show that ψα(x, t) is ob-
tained simply by replacing α in ψα(x) by α(t). Calculate
|ψα(x, t)|2 and discuss [consider especially (g)]. What is
special about these coherent states? Plots might help.



3. A charged particle experiences the oscillator potential

V =
1

2
mω2X2.

The whole system is then placed in a uniform electric field so
that there is an additional potential

W = −qEX

where q is the carge and E the magnitude of the electric field.

(a) Plot the total potential for this system with E 6= 0.

(b) Calculate the eigenstates and energies for this system.

(c) This is a reasonable model of an electron bound to an
atom placed in an electric field — the classical version is
often used to explain the index of refraction in materi-
als, for instance. A useful parameter for an atomic state
is its polarizability. Calculate the polarizability and the
induced dipole moment for the state |n〉. HINT: The po-
larizability α is defined from the energy as E = − 1

2αE2.

4. Let’s place our charged oscillator from Prob. 3 in a time-
varying electric field E(t). The total potential is thus

V (X, t) =
1

2
mω2X2 − qE(t)X.

Let’s see if our coherent state still behaves like a classical
particle.

(a) Sketch a picture of what you expect to happen as a func-
tion of time for E(t) = E0 sinω′t for some choice of α.

(b) The number α(t) = 〈ψ(t)|a|ψ(t)〉 evolves according to
[see Prob. 2(a)]

d

dt
α(t) = −iωα(t) + iλ(t)

with
λ(t) =

q√
2m~ω

E(t).

Integrate this equation to find α(t) and α∗(t).

(c) Calculate 〈X〉(t) and 〈P 〉(t) and compare with the classi-
cal result. Does the coherent state still mimic a classical
particle?

(d) Assume that at t = 0, |ψ(t)〉 = |n = 0〉. Take

E(t) = E0 sinω′t

for 0 ≤ t ≤ T and zero otherwise. If the energy is mea-
sured for some time t > T , what results can be found and
with what probabilities? Consider the case when ω′ = ω
and when ω′ 6= ω. Why are these results different?


