
Homework 6

Due in class Oct. 9

1. By now, you know the potential

V (x) = −V0a [δ(x− a) + δ(x+ a)]

very well (a and V0 are positive, real constants). We want
to revisit its solutions, this time for the resonant states. You
should assume ~ = m = 1, a = 1, and V0 = 5 (in appropriate
units).

To solve this problem, you will need a convention for nor-
malizing the continuum states. One standard convention is
called “momentum normalization” (we have talked about this
before). It implies that the orthonormality relation is

∫

∞

−∞

dxψ∗

p′(x)ψp(x) = δ(p− p′).

This is accomplished by writing

ψp(x) =
1√
2π~

exp

(

ipx

~

)

In practice, one imposes this normalization by making sure
the wave function has the same amplitude as this momentum
eigenstate asymptotically.

(a) What are the approximate conditions for a resonance to
occur? At what energies will they (approximately) ap-
pear?

(b) Locate the first transmission resonance and plot its wave
function. Make sure to normalize it as described above.
Do the same for the third resonance. Compare these two
wave functions and answer the following:

(i) How many nodes do they have between x = −a
and x = +a? Explain why they have the number
they do. (Keep in mind that there might be bound
states!)

(ii) How do their amplitudes in this region compare?
Explain this physically, making sure to connect with
the behavior of the transmission and reflection prob-
abilities.

(iii) Based on these observations, sketch the wave func-
tion for the fourth and fifth resonances. Make
sure to reproduce their key characteristics semi-
quantitatively.

(c) Assume the system is initially in the state

ψ(x, 0) =

{

N cos2
(

πx
2a

)

|x| ≤ a

0 otherwise
.

Find the time-dependent wave function and examine its
time evolution (the probability density is probably a use-
ful thing to study). Calculate the quantity |〈ψ(0)|ψ(t)〉|2.
What does this quantity represent physically?

(d) Assume now that the system is initially in the state

ψ(x, 0) =

{

N cos2
(

πx
a

)

|x| ≤ a
2

0 otherwise
.

Find the time-dependent wave function and examine its
time evolution. Calculate the quantity |〈ψ(0)|ψ(t)〉|2.

(e) Now we want to try to understand your results from
(c) and (d). Show some characteristic plots of |ψ(x, t)|2
and/or describe their behavior. Plot |〈ψ(0)|ψ(t)〉|2 for
each case and describe them physically. HINT: Reso-
nances probably play an important role.

2. Let us now consider a more realistic model for a molecular
potential:

V (x) = V0

[

(x

α

)2

− 1

]2

where α and V0 are positive, real constants. A potential of this
form is a good model for the position x of the nitrogen atom
in ammonia, NH3. The shape of ammonia can be pictured
as a pyramid with a triangular base — the H’s lie at the
corners of the base, and the N at the top. There is no reason,
however, for the nitrogen to stay above the H’s, and it can
tunnel through the base to be on bottom.

(a) Sketch or plot the potential. What symmetries does it
possess? Sketch your guess for the ground and first ex-
cited state wave functions. What do these symmetries
and wave functions represent physically for the NH3, i.e.

positions of the nuclei?

(b) For a particle localized on one side of the barrier, the
potential appears nearly harmonic near the minimum.
Find the effective harmonic potential for such a particle.

(c) Construct an approximate ground and first excited state
wave function as a linear combination of the ground
states of the right- and left-side simple harmonic oscil-
lator (SHO) potentials from (b). [Just like you did in
2(c) above for the square wells.] Calculate the energies
of your approximate states from the expectation value of

the Hamiltonian with the full potential. Use V0 = 6~
2

mα2

and V0 = 8~
2

mα2 . Explain the change in energies between
these two values of V0. The energies of the SHO states
were the same — why are the energies of your approxi-
mate states different?

(d) Estimate the time it takes for a particle localized to the
left of the barrier to appear on the right side [use the val-
ues of V0 from (c)]. [HINT: Your approximate eigenstates
will evolve approximately in time with a phase e−iEt/~

where E is the energy you calculated in (c)].

3. For a simple harmonic oscillator, compute the following
using raising and lowering operators:

(a)

〈n′|X̂|n〉 =

√

~

2mω

[√
n+ 1 δn′,n+1 +

√
n δn′,n−1

]

〈n′|P̂ |n〉 = i

√

m~ω

2

[√
n+ 1 δn′,n+1 −

√
n δn′,n−1

]

.

(b) 〈X̂〉 and 〈P̂ 〉 for an arbitrary state |n〉

(c) 〈X̂2〉 and 〈P̂ 2〉 for an arbitrary state |n〉



(d) 〈T̂ 〉 and 〈V̂ 〉 for an arbitrary state |n〉 and verify that the
virial theorem is satisfied.

4. Project the relation

â|n〉 =
√
n|n− 1〉

on the position basis and derive the recursion relation

H
′

n(y) = 2nHn−1(y)

for Hermite polynomials where y =
√

(mω/~)x.

5. The initial state of a simple harmonic oscillator is

|ψ(0)〉 = α|0〉 + β|1〉.

(a) Find the expansion coefficients that maximize 〈X̂〉(0).

(b) Using your coefficients from (a), find 〈X̂〉(t). Explain
your result physically (illustrations using the coordinate
space probability density might help).

(c) If the energy were measured at some time t, what values
could be obtained and with what probabilities?

(d) If the initial state were instead a linear combination of
|1〉 and |2〉, discuss qualitatively how your answer to (b)
would change.

(e) Repeat (d) for an initial linear combination of |0〉 and
|2〉.


