The Delta function potential

Given

$$V(x) = V_0 a \delta(x),$$

we need to calculate R and T.

(a) Well, we know

$$\psi(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & x \le 0 \\ Ce^{ikx} + De^{-ikx} & x \ge 0 \end{cases}.$$

Matching requires some care. To find the condition on ψ' , we write

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi + V_0 a\delta(x)\psi = E\psi$$
$$-\frac{\hbar^2}{2m}\int_{-\epsilon}^{\epsilon} dx \frac{d^2\psi}{dx^2} + V_0 a\psi(0) = \int_{-\epsilon}^{\epsilon} dx E\psi = 0$$

by continuity of ψ . So,

$$\frac{d\psi}{dx}\bigg|_{+\epsilon} - \frac{d\psi}{dx}\bigg|_{-\epsilon} = \frac{2mV_0}{\hbar^2}a\psi(0).$$

Now define the unitless quantity

$$\gamma = \frac{2mV_0a^2}{\hbar^2}.$$

Finally, matching gives

for
$$\psi$$
 $A + B = C + D$

for
$$\psi'$$
 $-ik(A-B) + ik(C-D) = \frac{\gamma}{a}\psi(0) = \frac{\gamma}{a}(C+D).$

Rewriting in matrix form gives

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} A \\ B \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 + i \frac{\gamma}{ka} & -1 + i \frac{\gamma}{ka} \end{array}\right) \left(\begin{array}{c} C \\ D \end{array}\right)$$

or

$$\left(\begin{array}{c}A\\B\end{array}\right)=\left(\begin{array}{cc}1&1\\1&-1\end{array}\right)^{-1}\left(\begin{array}{cc}1&1\\1+i\frac{\gamma}{ka}&-1+i\frac{\gamma}{ka}\end{array}\right)\left(\begin{array}{c}C\\D\end{array}\right).$$

We can easily invert the matrix to find

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)^{-1} = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

So,

Defining the new quantity $\Gamma = \frac{\gamma}{2ka}$, we can write this simply as

$$\left(\begin{array}{c} A \\ B \end{array}\right) = \left(\begin{array}{cc} 1+i\Gamma & i\Gamma \\ -i\Gamma & 1-i\Gamma \end{array}\right) \left(\begin{array}{c} C \\ D \end{array}\right).$$

Finally, for left incidence, D=0, and

$$R = \frac{|B|^2}{|A|^2}$$
 and $T = \frac{|C|^2}{|A|^2}$.

Solving for B and C,

$$\left(\begin{array}{c} A \\ B \end{array}\right) = \left(\begin{array}{cc} 1+i\Gamma & i\Gamma \\ -i\Gamma & 1-i\Gamma \end{array}\right) \left(\begin{array}{c} C \\ 0 \end{array}\right)$$

or

$$A = (1 + i\Gamma)C$$
$$B = -i\Gamma C.$$

giving

$$R = \left| \frac{-i\Gamma}{1+i\Gamma} \right|^2 = \frac{\Gamma^2}{1+\Gamma^2}$$
$$T = \left| \frac{1}{1+i\Gamma} \right|^2 = \frac{1}{1+\Gamma^2}.$$

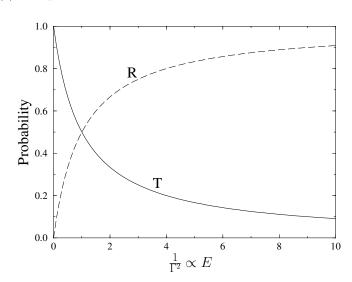
Clearly, R + T = 1.

(b) Both R and T depend only on

$$\Gamma^2 = (\frac{\gamma}{2ka})^2 = (\frac{2mV_0a^2}{\hbar^2} \frac{1}{2ka})^2 \propto V_0^2.$$

So, the sign of V_0 doesn't matter.

(c) The plots are



These behave as we expect both when $E \to 0$ and $E \to \infty$. In particular, $T \to 1$ for $\frac{1}{\Gamma^2} \gg 1$ which is equivalent to $\frac{E}{V_0} \gg 1$. Note that right incidence give the same answer by symmetry.