The Delta function potential

Given

V(z) = Vhad(z),

we need to calculate R and T.

(a) Well, we know
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Matching requires some care. To find the condition on v/, we
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by continuity of ¥. So,
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Now define the unitless quantity
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Finally, matching gives
forYy A+B=C+D
for o' —ik(A—B)+ik(C - D) = L) = (C + D).

Rewriting in matrix form gives
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We can easily invert the matrix to find
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Defining the new quantity I' = 5, we can write this simply
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Finally, for left incidence, D = 0, and

So,

|B|2 and T= ‘0‘2
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Solving for B and C,

(5)=-("% S )(0)

or
A= (1+il)C
B = —iI'C,
giving
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Clearly, R+ T = 1.

(b) Both R and T depend only on
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So, the sign of V;; doesn’t matter.

(¢) The plots are
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These behave as we expect both when £ — 0 and E — oco. In
particular, T'— 1 for % > 1 which is equivalent to Vﬁo > 1.

Note that right incidence give the same answer by symmetry.



