conjugation which does not affect the question of orthonormality), the result we
already have for the columns of a unitary matrix tells us the rows of U are
orthonormal.

Proof 2. Since U'U=1,

8;=<illlj>=<i|U'U|j>
=5 <G UN kY<K UL
k

=Y ULUy=Y UiUy (1.6.22)
k k

’

which pfoves the theorem for the columns. A similar result for the rows follows if
we start with the equation UU'=1. Q.E.D.
Note that U'U=1I and UU'=1 are not independent conditions.

Exercise 1.6,4.* It is assumed that you know (1) what a determinant is, (2) that det Q"=
det Q (T denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

o5 %) '

Yy o

- with det Q= (ad — f7).] Prove that the determinant of a unitary matrix is a complex number
of unit modulus.

" Exercise 1.6.5.* Verify that R(3 7ri) is unitary (orthogonal) by examining its matrix.

 Exercise 1.6.6. Verify that the following matrices are unitary:
L[l i] 1[1+i l—i:l
27210 11 2[1-i 1+
rmitian?

*Active and Passive Transformations
uppose we subject all the vectors | ) in a space to a unitary transformation
|[V>-UVY 1.7.1)

»this transformation, the matrix elements of any operator Q are modified as

VIQUVIUVIQUVY =V UQU| VS (1.7.2)

;rify that the determinant is of the form ¢ in each case. Are any of the above matrices
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It is clear that the same change would be effected if we left the vectors alone and
subjected all operators to the change

Q-U'QU ‘ (1.7.3)

The first case is called an active transformation and the second a passive transforma-
tion. The present nomenclature is in reference to the vectors: they are affected in an
active transformation and left alone in the passive case. The situation is exactly the
opposite from the point of view of the operators.

Later we will see that the physics in quantum theory lies in the matrix elements
of operators, and that active and passive transformations provide us with two equiva-
lent ways of describing the same physical transformation.

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal matrix
elements

TrQ=Y Q;

Show that

(1) Tr(QA)=Tr(AQ)

(2) Tr(QA8) =Tr(A0Q)=Tr(6QA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i)— U|i). [Equiva-
lently, show Tr Q=Tr(U'QU).]

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary change
of basis. [Equivalently show det Q= det(U'QU).]

1.8. The Eigenvalue Problem
Consider some linear operator  acting on an arbitrary nonzero ket | V).
QVr={v" (1.8.1)
Unless the operator happens to be a trivial one, such as the identity or its multiple,
the ket will suffer a nontrivial change, i.e., | V') will not be simply related to { V).
So much for an arbitrary ket. Each operator, however, has certain kets of its own,
called its eigenkets, on which its action is simply that of rescaling:

QYy=alV) (182) |

Equation (1.8.2) is an eigenvalue equation: | V') is an eigenket of Q with eigenvalue fﬂ
®. In this chapter we will see how, given an operator (2, one can systematically 3§

determine all its eigenvalues and eigenvectors. How such an equation enters physics 4

will be illustrated by a few examples from mechanics at the end of this section, and §
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way.




