not parallel by assumption. The intersection point P will determine how much of
|1> and |2) we want: we go from the tail of |3) to P using the appropriate multiple
of {1> and go from P to the tip of |3) using the appropriate multiple of |2}.

Exercise 1.1.4. Consider three elements from the vector space of real 2 x 2 matrices:

0 1 11 -2 -1
ll>—[0 0] |2>—[0 1] I3>—[ o _2]

Are they linearly independent? Support your answer with details. (Notice we are calling
these matrices vectors and using kets to represent them to emphasize their role as elements
of a vector space.)

Exercise 1.1.5. Show that the following row vectors are linearly dependent: (1, 1, 0),
(1,0, 1), and (3, 2, 1). Show the opposite for (1, 1,0), (1,0, 1), and (0, 1, 1).

Definition 4. A vector space has dimension n if it can accommodate a maximum
of n linearly independent vectors. It will be denoted by V*(R) if the field is real
and by V"(C) if the field is complex.

In view of the earlier discussions, the plane is two-dimensional and the set of
all arrows not limited to the plane define a three-dimensional vector space. How
about 2 % 2 matrices? They form a four-dimensional vector space. Here is a proof.
The following vectors are linearly independent:

) 0 1 0 0 0 0
ll>—[0 0] '2>_[o o] '3>_[1 0} '4>_[0 1:'

since it is impossible to form:linear combinations of any three of them to give the
fourth any three of them will have a zero in the one place where the fourth does
not. So the space is at least four-dimensional. Could it be bigger? No, since any
arbitrary 2 X 2 matrix can be written in terms of them:

[“ b]=all>+bl2>+c|3>+dl4>
c d ,

If the scalars a, b, ¢, d are real, we have a real four-dimensional space, if they
are complex we have a complex four-dimensional space.

Theorem 1. Any vector | V') in an n-dimensional space can be written as a linear
combination of n linearly independent vectors |1) ... |n).

The proof is as follows: if there were a vector | V) for which this were not
possible, it would join the given set of vectors and form a set of n+1 linearly
independent vectors, which is not possible in an n-dimensional space by definition.
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Definition 5. A set of n linearly independent vectors in an n-dimensional space )
is called a basis.

Thus we can write, on the strength of the above

VY=Y ulid (1.13)

i=1
where the vectors [/ form a basis.

Definition 6. The coefficients of expansion u; of a vector in terms of a linearly
independent basis (|i)) are called the components of the vector in that basis.

Theorem 2. The expansion in Eq. (1.1.3) is unique.

Suppose the expansionis not unique. We must then have a second expansion:

Vo= o> (1.1.4)

=1

Subtracting Eq. (1.1.4) from Eq. (1.1.3) (i.e., multiplying the second by the
scalar —1 and adding the two equations) we get

10> =% (vi— v} (1.1.5)

which implies that
v;= 0] (1.1.6)

since the basis vectors are linearly independent and only a trivial linear reiation
between them can exist. Note that given a basis the components are unique, but if
we change the basis, the components will change. We refer to | V') as the vector in
the abstract, having an existence of its own and satisfying various relations involving
other vectors. When we choose a basis the vectors assume concrete forms in terms
of their components and the relation between vectors is satisfied by the components.
Imagine for example three arrows in the plane, 4, B, C satisfying A + B= C according
to the laws for adding arrows. So far no basis has been chosen and we do not need
a basis to make the statement that the vectors from a closed triangle. Now we choose
a basis and write each vector in terms of the components. The components will
satisfy C;=A;+ B;, i=1, 2. If we choose a different basis, the components will change
in numerical value, but the relation between them expressing the equality of C to
the sum of the other two will still hold between the new set of components.




In the case of nonarrow vectors, adding them in terms of components proceeds
as in the elementary case thanks to the axioms. If

[V>=Y v;]i) and (1.1.7)
|W5=3 w;|i) then (1.1.8)

[VO+HIWD =2 (vt wili) (1.1.9)

where we have used the axioms to carry out the regrouping of terms. Here is the
conclusion:

To add two vectors, add their components.

There is no reference to taking the tail of one and putting it on the tip of the
other, etc., since in general the vectors have no head or tail. Of course, if we are
dealing with arrows, we can add them either using the tail and tip routine or by
simply adding their components in a basis.

In the same way, we have:

aVvy=al vl|iy=Y av|i) (1.1.10)

In other words,

To multiply a vector by a scalar, muitiply all its components by the scalar.

1.2. Inner Product Spaces

The matrix and function examples must have convinced you that we can have
‘a vector space with no preassigned definition of length or direction for the elements.
- However, we can make up quantities that have the same properties that the lengths
~and angles do in the case of arrows. The first step is to define a sensible analog of
/ the dot product, for in the case of arrows, from the dot product

=)A]|B) cos 6 ' (1.2.1)

we can read off the length of say A as JJA[ 4] and the cosine of the angle between
Wo vectors as A - B/| A|| B]. Now you might rightfully object: how can you use the dot
product to define the length and angles, if the dot product itself requires knowledge of
he lengths and angles? The answer is this. Recall that the dot product has a second
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