conjugation which does not affect the question of orthonormality), the result we
already have for the columns of a unitary matrix tells us the rows of U are
orthonormal.

Proof 2. Since U'U=1,

8y= il =<U'U
=Y <l UNkXKI UL
k
=Y ULU,=Y U&U, (1.6.22)
k k
which proves the theorem for the columns. A similar result for the rows follows if
we start with the equation UU'=1. Q.E.D.
Note that U'U=1 and UU'=1 are not independent conditions.
Exercise 1.6.4." 1t is assumed that you know (1) what a determinant is, (2) that det Q"=

det Q (T denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. {If you do not, verify these properties for a two-dimensional case

a-(; %)

y &

with det Q= (aé — By).] Prove that the determinant of a unitary matrix is a complex pumber
of unit modulus.

Exercise 1.6.5." Verify that R(3 ni) is unitary (orthogonal) by examining its matrix.

Exercise 1.6.6. Verify that the following matrices are unitary:

L[l i] l[H—i 1—;]
2221 10 2l1=i 1+i
Verify that the determinant is of the form € in each case. Are any of the above matrices
Hermitian?
1.7. Active and Passive Transformations
Suppose we subject all the vectors | V) in a spacé to a unitary transformation
[V >=U|V> (1.7.1)

Under this transformation, the matrix elements of any operator Q are modified as
follows:

VNV Y-LUVIQUVS = (V| UQUI V> (1.7.2)
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It is clear that the same change would be effected if we left the vectors alone
subjected all operators to the change

Q-UQU (1

The first case is called an active transformation and the second a passive transfon
tion. The present nomenclature is in reference to the vectors: they are affected in
active transformation and left alone in the passive case. The situation is exactly
opposite from the point of view of the operators.

Later we will see that the physics in quantum theory lies in the matrix eleme
of operators, and that active and passive transformations provide us with two equi
lent ways of describing the same physical transformation.

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal mat
elements

TrQ=ZQﬁ

Show that

(1) Tr(QA)=Tr(AQ)

(2) Tr(Q2A0)=Tr(A6Q)=Tr(6QA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i)— U|i). [Equiv
lently, show Tr Q=Tr(U'QU).]

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary chan;
of basis. [Equivalently show det Q=det{ U'QU).]

1.8. The Eigenvalue Problem

Consider some linear operator £} acting on an arbitrary nonzero ket | V') :

i

QV>=1V) (1.8.1

Unless the operator happens to be a trivial one, such as the identity or its multiple
the ket will suffer a nontrivial change, ie., | V") will not be simply related to | V)
So much for an arbitrary ket. Each operator, however, has certain kets of its own.
called its eigenkets, on which its action is simply that of rescaling:

QVy=o|V) (182

Equation (1.8.2) is an eigenvalue equation: [ V') is an eigenket of € with eigenvalue
. In this chapter we will see how, given an operator €2, one can systematically
determine all its eigenvalues and eigenvectors. How such an equation enters physics
will be illustrated by a few examples from mechanics at the end of this section, and
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way.




Example 1.8.1. To illustrate how easy the eigenvalue problem really is, we will
begin with a case that will be completely solved: the case Q=1. Since

V)=V,
for all | V'), we conclude that
(1) the only eigenvalue of Iis 1;
(2) all vectors are its eigenvectors with this eigenvalue. O

Example 1.8.2. After this unqualified success, we are encouraged to take on a
slightly more difficult case: Q= P}, the projection operator associated with a normal-
ized ket‘ {V>. Clearly
(1) any ket a|V)=|a V), parallel to | V') is an eigenket with eigenvalue 1:

PrlaVy=|VXVIaV)=a|V)|V|*=1-|aV)
(2) any ket |V, ), perpendicular to | V), is an eigenket with eigenvalue 0:
PyIV)=IVXVIVL)=0=0[V.)

(3) kets that are neither, i.e., kets of the form «|V)+p|V,), are simply not
eigenkets:

Py(a|V)+BIVi)=laV)#y(alV>+BIVL))

Since every ket in the space falls into one of the above classes, we have found
all the eigenvalues and eigenvectors. O

Example 1.8.3. Consider now the operator R(3i). We already know that it
has one eigenket, the basis vector [1) along the x axis:

RGri)|1y={1)
Are there others? Of course, any vector a|1) along the x axis is also unaffected by
the x rotation. This is a general feature of the eigenvalue equation and reflects the
linearity of the operator:
if

QV =o|V)

then

Qa|V)=aQ|V)=ao|V)=wa|V)
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for any multiple a. Since the eigenvalue equation fixes the eigenvector only up ¢
an overall scale factor, we will not treat the multiples of an eigenvector as disting
eigenvectors. With this understanding in mind, let us ask if R(37i) has any eigenvec
tors besides [1). Our intuition says no, for any vector not along the x axis necessaril
gets rotated by R(7i) and cannot possibly transform into a multiple of itself. Sing
every vector is either parallel to |1) or isn’t, we have fully solved the eigenvaly
problem.

The trouble with this conclusmn is that it is wrong! R(37i) has two othe
eigenvectors besides |1). But our intuition is not to be blamed, for these vectors ar
in V3(C) and not V3(R). It is clear from this example that we need a reliable anc
systematic method for solving the eigenvalue problem in V*(C). We now turn oy
attention to this very question. C

The Characteristic Equation and the Solution to the Eigenvalue Problem
We begin by rewriting Eq. (1.8.2) as
(Q—oDiV>=10) (18.3)
Operating both sides with (Q— wI)™', assuming it exists, we get
Wy=Q-ol)7'|0> (1.8.9)

Now, any finite operator (an operator with finite matrix elements) acting on the nuli
vector can only give us a null vector. It therefore seems that in asking for a nonzer

eigenvector | V'), we are trying to get something for nothing out of Eq. (1.8.4). Thi

is impossible. It follows that our assumption that the operator (Q— @I)™" exists (a

a finite operator) is false. So we ask when this situation will obtain. Basic matri

theory tells us (see Appendix A.1) that the inverse of any matrix M is given by

_, _cofactor M”

1.8.5)
det M ( )

Now the cofactor of M is finite if M is. Thus what we need is the vanishing of the
determinant. The condition for nonzero eigenvectors is therefore

det(Q—0I)=0 (1.8.6)

This equation will determine the eigenvalues @. To find them, we project Eq. (1.8.3)
onto a basis. Dotting both sides with a basis bra {i|, we get

GIQ—ollV)=0




and upon introducing the representation of the identity [Eq. (1.6.7)], to the left of
|V, we get the following image of Eq. (1.8.3):

Y (Qy— 08,)5,=0 (1.8.7)

Setting the determinant to zero will give us an expression of the form

T ™ =0 (1.8.8)

Equation (1.8.8) is called the characteristic equation and

P (@)= 5 cna™ (1.8.9)

m=0

is called the characteristic polynomial. Although the polynomial is being determined
in a particular basis, the eigenvalues, which are its roots, are basis independent, for
they are defined by the abstract Eq. (1.8.3), which makes no reference to any basis.

Now, a fundamental result in analysis is that every nth-order polynomial has n
roots, not necessarily distinct and not necessarily real. Thus every operator in V"(C)
has n eigenvalues. Once the eigenvalues are known, the eigenvectors may be found,
at least for Hermitian and unitary operators, using a procedure illustrated by the
following example. [Operators on V"(C) that are not of the above variety may not
have n eigenvectors—see Exercise 1.8.4. Theorems 10 and 12 establish that Hermitian
. and unitary operators on V"(C) will have n eigenvectors.]

Example 1.8.4. Let us use the general techniques developed above to find all
the eigenvectors and eigenvalues of R(37i). Recall that the matrix representing it is

RG i) &

[ R
- o o
I
—

Therefore the characteristic equation is
- 0 0
det(R—wl)=| O -0 -1[=0
0 1 —w

le.,

(1- o) (w*+1)=0 (1.8.10)
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with roots @ =1, +i. We know that @ =1 corresponds to |1). Let us see this cop
out of the formalism. Feeding @ =1 into Eq. (1.8.7) we find that the componep
X1, X2, and x; of the corresponding eigenvector must obey the equations

1-1 0 o[x7 Jo 0=0
0 0-1 -1|lx|=|0 —>—x2—x3=0}_)x2=x3=0
0 1 0-1 X3 0 X2—X3=0

Thus any vector of the form

Xy
x|1)e10
0

is acceptable, as expected. It is conventional to use the freedom in scale to normali;
the eigenvectors. Thus in this case a choice is

1
lo=1>=[1>=]0
0

I say a choice, and not the choice, since the vector may be multiplied by a numbe
of modulus unity without changing the norm. There is no universally accepted con
vention for eliminating this freedom, except perhaps to choose the vector with rea
components when possible. |‘

Note that of the three simultaneous equations above, the first is not a rea
equation. In general, there will be only (n—1) LI equations. This is the reason th
norm of the vector is not fixed and, as shown in Appendix A.1, the reason th-
determinant vanishes.

Consider next the equations corresponding to o =i. The components of th«
eigenvector obey the equations ~ }

(1-i)x;=0 (ie., x,=0)
—ix,—x3=0 (i.e., Xxa=1ix3)
X2—ix3=0 (i.e., x2=1ix3)

. . . |
Notice once again that we have only n—1 useful equations. A properly normalizec
solution to the above is

] 1
|(D=l>‘—>2—,/—2




A similar procedure yields the third eigenvector:

0
—-i : ]
I

|(0="i><-"5,75

In the above example we have introduced a popular convention: labeling the
eigenvectors by the eigenvalue. For instance, the ket corresponding to w=w; is
labeled | @ = ;) or simply |w;). This notation presumes that to each w, there is just
one vector labeled by it. Though this is not always the case, only a slight change in
this notation will be needed to cover the general case.

The phenomenon of a single eigenvalue representing more than one eigenvector
is called degeneracy and corresponds to repeated roots for the characteristic poly-
nomial. In the face of degeneracy, we need to modify not just the labeling, but also
the procedure used in the example above for finding the eigenvectors. Imagine that
instead of R(37i) we were dealing with another operator Q on V3(R) with roots o,
and w;= ;. It appears as if we can get two eigenvectors, by the method described

~ above, one for each distinct @. How do we get a third? Or is there no third? These
questions will be answered in all generality shortly when we examine the question
of degeneracy in detail. We now turn our attention to two central theorems on
Hermitian operators. These play a vital role in quantum mechanics.

Theorem 9. The eigenvalues of a Hermitian operator are real.
Proof. Let
Qo)=o|w)
Dot both sides with {(w|:
(o|Qe)=wloo) (1.8.11)
Take the adjoint to get
(0|0} =0*(ojo)
Since Q=Q", this becomes
(w|Qo)=o*o|o)
Subtracting from Eq. (1.8.11)
0=(0—0*){wlw)

o=0"* QUED.
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