
Homework 6

Due in class Sept. 30
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1. A particle traveling through a
double slit apparatus is described
by the wave function

ψ(x) ∝ e−( x

∆
)2

an infinitesimal time before t =
0 (before it hits the slits). You
should assume that ∆ À 2l. The
coordinate x is transverse to the
particle’s direction of travel through the apparatus, and we will
ignore the behavior in the direction of travel (so v0 doesn’t mat-
ter, right?). At t = 0 the particle passes through the slits, so
you know that the position of the particle is x = ±l with some
uncertainty. In effect, the slits have measured the position of the
particle!

(a) What do you expect to happen as the system evolves in time?
For instance, what do you expect |ψ(x, t)|2 to look like as the
particle travels past the slits? Sketches would be good.

(b) Assuming that the uncertainty in the particle’s position at
each slit can be represented by a Gaussian distribution with
standard deviation a, write down the wave function imme-
diately after the particle leaves the slits. You may assume
a¿ l.

(c) Find the time-dependent wave function for any positive time
t.

(d) Calculate the probability density |ψ(x, t)|2 and discuss it
physically.

(e) Plot |ψ(x, t)|2 for several times t, from being small compared

to τ = ma2

~
, to being comparable to τ , to being large com-

pared to τ . Were your expectations in (a) above correct?
Discuss the why’s and why not’s.

2. Consider a square well of width a and depth −V0 such that
there is only a single bound state. Now add a second, identical
well at a distance l (center to center) away. Such a potential
is qualitatively very much like what an electron might see in a
diatomic molecule (like H+

2 ). The electron moves much faster than
the heavy protons, so they appear essentially fixed in space. The
approximation that uses this fact is called the Born-Oppenheimer
approximation and is widely used in studies of molecules.

(a) What symmetries does this system possess?

(b) Calculate the bound state wave functions and energies as a
function of l. Plot the energies as a function of l — these
turn out to be effective potential curves for the motion of the
protons (once the proton-proton repulsion is added). Explain
the behavior of the curves as a function of l, especially the
limits l → 0 and l → ∞. You may want to plot the wave
function at a couple of representative values.

(c) Using the eigenstates of a single square well, you can build
approximate solutions to the double well problem by super-
posing them in the appropriate way. Do so, and calculate the
energies (as a function of l) of these approximate solutions.
Does this approach help you explain the difference in energy
between the two bound state solutions?

(d) Add one more potential well a distance l from its neighbor.
What symmetries does the system have now? Follow your
approach in (c) and construct approximate bound state wave
functions using the single well eigenstates. How do the ener-
gies of these states behave with l?

(e) By looking at the pattern of bound state energies for one well,
two wells, and three wells, can you speculate what the bound
state energies of the system will look like for N wells? This
progression captures the essential physics of going from the
structure of an atom (one well), to the structure of a molecule
(two and three wells), to the structure of a solid (N wells).

3. Let us now consider a more realistic model for a molecular
potential:

V (x) = V0

[

(x

α

)2

− 1

]2

where α and V0 are constants. A potential of this form is a good
model for the position x of the nitrogen atom in ammonia, NH3.
The shape of ammonia can be pictured as a pyramid with a tri-
angular base — the H’s lie at the corners of the base, and the
N at the top. There is no reason, however, for the nitrogen to
stay above the H’s, and it can tunnel through the base to be on
bottom.

(a) Sketch or plot the potential. What symmetries does it pos-
sess? Sketch your guess for the ground and first excited state
wave functions.

(b) For a particle localized on one side of the barrier, the poten-
tial appears nearly harmonic near the minimum. Find the
effective harmonic potential for such a particle.

(c) Construct an approximate ground and first excited state wave
function as a linear combination of the ground states of the
right- and left-side simple harmonic oscillator (SHO) poten-
tials from (b). [Just like you did in 2(c) above for the square
wells.] Calculate the energies of your approximate states from
the expectation value of the Hamiltonian with the full poten-

tial. Use V0 = 6~
2

mα2 and V0 = 8~
2

mα2 . Explain the change in
energies between these two values of V0. The energies of the
SHO states were the same — why are the energies of your
approximate states different?

(d) Estimate the time it takes for a particle localized to the left
of the barrier to appear on the right side [use the values of V0

from (c)]. [HINT: Your approximate eigenstates will evolve
approximately in time with a phase e−iEt/~ where E is the
energy you calculated in (c)].

4. For the potential

V (x) = −V0a (δ(x− a) + δ(x+ a))

with a and V0 positive, real constants.

(a) What do you expect the transmission coefficient to look like?
Make a sketch.

(b) Calculate the reflection and transmission coefficients for scat-
tering from this potential. Plot R and T and discuss them.


