
Homework 10

Due in class Nov. 4

1. Consider an infinite square well

V (x) =

{

0 if |x| ≤ a

2

+∞ otherwise

subject to the time-dependent perturbation

H1(t) = λX sinωt 0 ≤ t ≤ T.

(a) Calculate and plot (as a function of ω) the transition proba-
bilities to the first, second, and third excited states assuming
the system in the ground state initially. Set

ω =
8π2

~
2

2ma2

and plot the same probabilities as a function of T . Explain
the results in all cases.

(b) For the cases in (a), what is the probability (to the same order
as in (a)) that the ground state survives the perturbation?

(c) Assume now that the initial state of the system is an equal
admixture of the ground and first excited state. Repeat part
(a), making sure to explain the results and contrast them to
those in (a).

2. A particle is in the ground state of the infinite square well

V (x) =

{

0 0 < x < a

∞ otherwise.

At t = 0 the wall at x = a is suddenly moved to x = 2a. This
process happens very fast — approximately instantaneously.

(a) Calculate the probability that long after t = 0 the system is
in the ground state of the new potential. What is the earliest
time t for which your result is valid?

(b) How fast must the change take place for this “instantaneous”
assumption to be valid?

3. A delta function potential is actually not a bad model for
the H− atom: both have only one bound state and the potential
between the “outer” electron and H is short ranged like the delta
function. So, let’s explore this model a little, but reduced to 1D
for simplicity.

When working with electrons in atoms, it’s handy to use atomic
units. In these units, ~=me=e=1. So, H− is represented by the
Hamiltonian (in atomic units)

H0 = −
1

2

d2

dx2
− κδ(x)

where κ is a real positive number. This Hamiltonian describes
the motion of the electron in the presence of an H atom. We will
expose our H− to a laser pulse whose electric field is given by

E(t) = E0e
−( t

τ
)2 cosω0t.

The perturbation felt by the H− is thus

H1 = xE(t)

in the dipole approximation.

(a) Show that there is only one bound state with energy

E0 = −
κ2

2

where κ depends on constants in H0. Find the associated
wave function. Does it possess any symmetry?

(b) We know that evaluating the matrix elements in perturbation
theory is simpler if we can use symmetry. So, let’s construct
continuum states for H0 with the highest symmetry possible.
In particular, assume the following forms for the continuum
states:

ψo

E(x) =

√

2

πk

{

sin(kx+ φo) x < 0

sin(kx− φo) x > 0
,

ψe

E(x) =

√

2

πk

{

cos(kx+ φe) x < 0

cos(kx− φe) x > 0
,

where the subscript E indicates these are energy eigenstates,
and the superscript e and o indicates the even and odd so-
lutions, respectively. The constant prefactor is required to
energy normalize these states (just keep it along, but you
don’t need to worry about it). Verify that these states are
indeed even and odd. Calculate φe and φo.

(c) Using first order perturbation theory, calculate the ionization
probability for our model H− as a function of energy. Plot
your probability as a function of energy for ω < E0, ω ≈ E0,
and ω > E0. In each case discuss what you see physically.
In an experiment, this spectrum is exactly what you would
measure if you collected all ionized electrons and measured
their kinetic energy, right? For what values of E0 are your
results valid?

(d) In 3D, we can ask the question, “What is the angular distri-
bution of electrons?” In 1D, though, the best we can ask is
whether the ionized electrons go left or right. It is not so easy
to answer this question with the continuum states above since
they don’t move (〈P 〉 = 0 for real functions, right?). So, let’s
construct new states that represent electrons moving right
and left:

ψL

E(x) →

√

2

πk
e−ikx for x < 0,

ψR

E(x) →

√

2

πk
eikx for x > 0.

(We don’t care about ψL

E
for x > 0 or ψR

E
for x < 0 since

we won’t be trying to detect them there!) These states must
be related to the even and odd solutions above — find the
relations. Using the orthogonality of ψe

E
and ψo

E
, are your

ψL

E
and ψR

E
also orthogonal?

(e) Calculate, in first order perturbation theory, the left- and
right- ionization probabilities PL(E) and PR(E). Plot these
as a function of E and discuss them physically.

(f) (10 pts) Extra Credit: Consider what the ionization prob-
abilities will be in second order perturbation theory. Be as
quantitative as possible. If you can’t do the calculation ex-
plicitly, say why not and discuss what you expect to happen
qualitatively (supported by quantitative estimates).


