Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons

Goal: probing **time-dependent** structural changes

Example: Isomerization of C_2H_2

C. D. Lin Kansas State U.

Adopted from:

http://www.nat.vu.nl/~kjeld/x-ray.html

the target ion-> structure info

Electron Self-diffraction -- History

Previous work/TDSE

- Zuo et al **1996** (R=20)
- 2. Lein et al 2002
- 3. Spanner et al 2004 (R=4)
- 4. Yurchenko et al 2004 (R=6)
- 5. Hu and Collins 2005 (R=15)

Interferences from diffraction and from laser

Itatani et al, Nature 2004 " Tomographic imaging of molecular orbitals"

Based on <u>plane waves</u> for continuum electrons

Problems of tomograpy examined in Le 2007, PRA.

Tomography: Neat, plausible but wrong – N2 is the ONLY example **QRS**: <u>Quantitative Rescattering Theory</u>

Collaborators: A. T. Le, Z. J. Chen, JL Xu, C. Jin, S. Micheau Toru Morishita (UEC, Japan) H. L. Zhou (Georgia State) Robert Lucchese (Texas A&M)

Ingredients of <u>dynamic chemical imaging theory</u>:

Forward direction– (from known structure \rightarrow HHG and HATI)

- Need <u>accurate Theory</u> of HATI and HHG from molecular targets
- Computationally be efficient
- Target structure info insensitive to (or independent of) lasers

The QRS fulfills all these requirements -> DCS / Photoionization

Backward direction -- (DCS/PICS--> structure)

Spatial information: use Inverse scattering theory or algorithm to retrieve structure of the target from DCS and PICS

Temporal resolution: provided by the probe laser pulse duration

Testing the QRS for HATI: use simple targets

Limited to one-electron model atomic systems

2. <u>Second-order strong field approximation</u> (Simple)

$$\mathbf{SFA2} \quad f_{2}(\vec{k}) = -\int_{-\infty}^{\infty} dt \int_{t}^{\infty} dt' \int d\vec{p} \langle \chi_{\vec{k}}(t') | V | \chi_{\vec{p}}(t') \rangle \langle \chi_{\vec{p}}(t) | H_{i}(t) | \Psi_{0}(t) \rangle$$

$$\boxed{I_{SFA}(p_{v},\theta_{v}) = W_{SFA}(p_{r})\sigma_{B1}(p_{r},\theta_{r})}$$

$$\uparrow \qquad \uparrow$$

3. Electron scattering (for HATI) DCS

$$\begin{split} \left[-\frac{\nabla^2}{2} + V(r) - \frac{k^2}{2} \right] \Psi_k^-(r) &= 0, \\ f(\theta) = f_c(\theta) + \hat{f}(\theta), \\ \hat{f}(\theta) &= \sum_{l=0}^{\infty} \frac{2l+1}{k} \exp(2i\sigma_l) \exp(i\delta_l) \sin \delta_l P_l(\cos \theta), \end{split}$$

Well developed tools in the last 50 years

Electron scattering Photoionization

$$f_c(\theta) = -\eta \exp(2i\sigma_0) \frac{\exp\{-i\eta \ln[\sin^2(\theta/2)]\}}{2k \sin^2(\theta/2)}$$

4. <u>Photo-recombination (for HHG</u>)—molecular target

$$\Psi_{\boldsymbol{k}}^{-}(\boldsymbol{r}) = \frac{1}{\sqrt{k}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} \exp[-i(\sigma_{l}+\delta_{l})]R_{El}(\boldsymbol{r})Y_{lm}(\Omega_{\boldsymbol{r}})Y_{lm}^{*}(\Omega_{\boldsymbol{k}}).$$

$$\frac{d^2 \sigma^R}{d\Omega_n d\Omega_k} = \frac{4\pi^2 \omega^3}{ck} \left| \langle \Psi_i | \boldsymbol{r} \cdot \boldsymbol{n} | \Psi_k^+ \rangle \right|^2.$$

Also: R-matrix method, close-coupling, coupled cluster,

Testing the **QRS** model from atoms

From TDSE

Nearly identical from TDSE and SFA2

$I_0 = 1 \times 10^{14} \, \text{W/cm}^2$

 $I_0 = 2 \times 10^{14} \, \text{W/cm}^2$

Depends on lasers only—target independent

Wave packets (arb.units.)

 $I_0{=}0.8{\,\times\,}10^{14}\,\text{W/cm}^2$, $\lambda{=}2000$ nm, FWHM=5 fs

target dependence of HATI -- DCS

 $I_0=1.0 \times 10^{14} \, W/cm^2$, $\lambda=800 \, nm$, FWHM=5 fs

Simplicity and significance of the QRS:

$$I(\mathbf{p}_{v}) = \sigma(p_{r}, \theta_{r}) W_{SFA}(p_{r})$$
structure
Lasers

thousands times faster

Photoelectrons are collected from a **focused laser beam—Volume integration** is needed

DCS can be extracted without knowing the laser parameters

DCS extracted from <u>experimental</u> ATI spectraindependent of lasers

Experimentalists do not always get it right- theory stands to the test

From Lew (10/19/09) : When his postdoc Zhangjin Chen reduced both our images and some you had sent him, he found some persistent differences between the two sets of images. To make a long story short, we have now traced this difference to an efficiency issue with the present VMI:

Consistency Check: DCS extracted be independent of lasers used

Next:

HHG

QRS

Photo-recombination

Wave-packets comparison from HHG

Extracted photo-recombination cross section & Phase

Differential photo-recombination cross section can be extracted with high accuracy!

Different lasers are used (I₀=10¹⁴ W/cm²)

QRS for HHG from aligned molecules

Impulsively aligning molecules with lasers – probed at revival time

HHG spectra: O₂ vs CO₂

CO₂ HHG phases –mixed gas (+Kr) exp

Experiment: Boutu *et al, Nature Phys* **4**, 545 (2008) Theory: QRS

Phase jump is seen in the QRS, but not in the simpler models

HHG yield vs harmonic order & alignment angle

On the differences between theories

Influence of multiple orbitals

QRS

Ionization rates: Laser intensity dependence

Photoionization cross sections: HOMO vs HOMO-1

QRS: Contributions from HOMO vs HOMO-1

4.0x10⁻⁸

2x10¹⁴ W/cm²

Cut-off=H35

Ellipticity of the HHG from aligned N₂

JILA exp.: Zhou *et al,* PRL 2009

QRS

Fixed alignment

(need to average over partial

alignment to compare with exp.)

Laser-induced electron diffraction – HATI electron spectra from molecules

First: Need electron-molecular ion DCS from aligned molecules

New! Simpler models used so far

DCS "extracted" from HATI for isotropic N2 and O2

Small differences between N2 and O2!

50 eV electrons

DCS vary strongly with Internuclear Distance. O2

Sensitive variation with R !!

For Isotropic distributed molecules

Emission angle θ (deg)

Interference term v.s. Internuclear Distance, N₂

N₂: R₀=2.062 a.u. +20%: R=2.474 a.u. +10%: R=2.268 a.u. -10%: R=1.856 a.u. -20%: R=1.649 a.u.

'N2_p2.711_adk_80' u 1:2:3

40

Simple examples of structure retrieval from HHG and from HATI

HHG depends on R's for <u>non-aligned</u> molecules

Retrieving atomic potential from elastic differential scattering cross sections

V(r) = -Z(r)/r

Summary and Comments:

- 1. Based on QRS, DCS and PICS can be retrieved from HATI and HHG.
- 2. Electron diffraction is sensitive to the electron density –good for positions of atoms (bond length and bond angles) in the molecule
- 3. Light atoms in the molecules are harder to "see".
- 4. Can use lasers of different wavelengths and intensities to extract laser-independent DCS.
- 5. Electron diffraction is less sensitive to molecular bonds, and electronic states are preferably retrieved from HHG

NEXT:

Generalize to dynamic systems– wave packet,.... Experimental data are needed

•Goal of dynamic imaging of molecules---

- DCS to retrieve bond angles and bond lengths
- HHG to retrieve electronic states (XFEL's cannot probe chemical bonds)
- •Robust retrieval methods yet to be developed
- Tomography is not endorsed !

References on QRS -

First paper: 2008 PRL

QRS for HATI: Chen et al Phys. Rev. A. 79, 033409 (2009). 20 pages

QRS for HHG: Le et al Phys. Rev. A80, 013401 (2009). 20 pages

16 other papers on QRS in 2008-9 Including applications to NSDI and laser retrieval

A topical review will appear in the first half of 2010 in J phys B