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ABSTRACT

Visualizing molecular transformations in real-time requires a structural retrieval method with Ångstr€om spatial and femtosecond temporal atomic
resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei,
with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table-top technique
that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-Ångstr€om and femtosecond spatiotemporal resolution
together with relatively high sensitivity to hydrogen scattering. Here, we image the umbrella motion of an isolated ammonia molecule (NH3) follow-
ing its strong-field ionization. Upon ionization of a neutral ammonia molecule, the ammonia cation (NH3

þ) undergoes an ultrafast geometrical
transformation from a pyramidal (UHNH ¼ 107�) to planar (UHNH ¼ 120�) structure in approximately 8 femtoseconds. Using LIED, we retrieve a
near-planar (UHNH ¼ 1176 5�) field-dressed NH3

þ molecular structure 7:8� 9:8 femtoseconds after ionization. Our measured field-dressed
NH3

þ structure is in excellent agreement with our calculated equilibrium field-dressed structure using quantum chemical ab initio calculations.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000046

I. INTRODUCTION

Many important processes in nature rely on the motion of hydro-
gen atoms, such as the influence of proton dynamics on the biological
function of proteins.1,2 The motion of the hydrogen atom, which is the
lightest element in the periodic table, occurs on the few-femtosecond
(few-fs; 1 fs¼ 10�15 s) timescale and represents the fastest possible
nuclear motion in molecules. Consequently, a method is required that
is both sensitive and fast enough to probe the motion of hydrogen
atoms with sub-Ångstrom (sub-Å; 1 Å¼ 10�10 m) spatial and femto-
second temporal atomic resolutions.3,4 The static geometric structure
of molecules can be successfully determined through a variety of

imaging and spectroscopic techniques,5 such as conventional electron
diffraction (CED),6 x-ray diffraction and crystallography,7 optical
and nuclear magnetic resonance (NMR) spectroscopies,8 scanning
tunneling microscopy (STM),8 and atomic force microscopy (AFM).8

In particular, the time-resolved analogues of x-ray and electron dif-
fraction, such as ultrafast x-ray diffraction (UXD)9,10 and ultrafast
electron diffraction (UED),11–18 have provided a wealth of dynamical
information in molecules that contain atoms much heavier than
hydrogen. As a result, their scattering signal in such molecules is
very large, and their respective dynamics occur on the hundreds-of-
femtosecond timescale.
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Laser-induced electron diffraction (LIED)5,19–30 is a strong-field
variant of UED that can directly retrieve the geometric structure of
gas-phase molecules containing hydrogen atoms with sub-Å and few-
to-sub-fs spatiotemporal resolution. The LIED technique is based on
probing the molecular geometric structure using the molecule’s own
emitted electron to elastically scatter against the atomic cores in the
molecule during strong-field-induced recollisions. The intra-optical-
cycle nature of the LIED process enables structural retrieval with sub-
femtosecond time resolution. Moreover, because of the small de
Broglie wavelength of the electrons, the technique provides picometer
(pm; 1 pm¼ 10�12 m) spatial resolution. Importantly, LIED is sensi-
tive to hydrogen atom scattering as the kinetic energy of scattering
electrons in LIED (i.e., 50–500 eV) is significantly lower than the tens
or hundreds of keV used in UED. At these low impact energies, hydro-
gen exhibits significant scattering cross section values compared to
those at the high energies and forward-only scattering employed in
UED. Presently, improving sensitivity to hydrogen scattering with
other methods is challenging. Moreover, the low-energy nature of
LIED electrons also provides a probe of the angular dependence of
elastic electron scattering, and thus the extraction of doubly differential
scattering cross sections.

In this work, we demonstrate LIED’s capability to image
the motion of hydrogen atoms on the few-fs timescale by studying
the umbrella (inversion) motion of the ammonia molecule (NH3)
following its strong-field ionization. Photoelectron spectra and
photoionization-induced dynamics of individual ammonia molecules
and clusters have been a topic of interest in the past decades, both
experimentally31–35 and theoretically.34–40 Neutral ammonia at its
equilibrium configuration has a pyramidal shape, described by the C3v

symmetry point group, with an equilibrium H–N–H bond angle,41

UHNH, of 107�, as shown in Fig. 1. When ionized, the ammonia mole-
cule undergoes a significant geometrical transformation as the ammo-
nia cation in its ground electronic state has a planar equilibrium
geometry of D3h symmetry with an equilibrium UHNH of 120�. F€orster
and Saenz (2013) developed a theoretical model to describe the inver-
sion motion of the ammonia cation (NH3

þ) for high-harmonic spec-
troscopy (HHS), where they predict that the NH3

þ nuclear wave
packet reaches the potential minimum on a 5-fs timescale.36 Kraus
and W€orner34 theoretically investigated the pyramidal-to-planar tran-
sition in NH3

þ, which they calculated to occur on a 7.9-fs timescale.
The authors also experimentally studied the same dynamics but could
only indirectly provide partial evidence of the umbrella motion
through high-harmonic spectroscopy (HHS). These HHS measure-
ments were, in fact, performed at different wavelengths in the near-
infrared (NIR) up to 1.8lm, reaching a temporal range of up to 3.8 fs
after ionization to be investigated. In the aforementioned HHS studies,
structural information could only be indirectly obtained, with no
direct imaging studies previously reported. Here, we use mid-infrared
(MIR)-LIED to directly retrieve structural information of the NH3

þ

cation 7:8� 9:8 fs after ionization, which is on a similar (7.9-fs) time-
scale as that predicted for the pyramidal-to-planar transition to occur
in the NH3

þ cation.34

This paper is organized as follows: First, a brief overview of the
experimental setup and the theoretical methods employed in this work
is given in Sec. II, followed by a discussion of the experimental and
theoretical results in Sec. III, and finally, a summary and conclusion of
our results are presented in Sec. IV.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS
A. Mid-infrared (MIR) OPCPA source

The MIR laser source is a home-built optical parametric chirped-
pulse amplifier (OPCPA) that has been previously described.42 Briefly,
the OPCPA setup generates a 3.2lm laser pulse with a duration of
100 fs full-width at half maximum (FWHM) at a 160 kHz repetition
rate. The high repetition rate compensates for the reduced rescattering
cross section due to the k�4 scaling factor.43 The laser pulse is focused
into the molecular beam using an on-axis paraboloid that is placed
inside the reaction microscope. The focal spot size achieved was
6–7lm, resulting in a peak intensity, I0, of 1.3 � 1014 W/cm2. Such
peak intensity translates to a ponderomotive energy (i.e., the average
kinetic energy of a free electron in an oscillating electric field), Up, of
120 eV, which corresponds to the maximum classical return energy
(Emax

r ¼ 3:17Up) of about 380 eV, and the maximum backscattered
energy (Emax

resc ¼ 10Up) of 1200 eV. The Keldysh parameter,44

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=ð2UpÞ

p
; was approximately 0.2.

B. Reaction microscope detection system

The detection system is based on a reaction microscope
(ReMi),45 which has been previously described in detail elsewhere46

FIG. 1. Scheme of the ultrafast umbrella motion of ammonia. The potential energy
curves for the neutral (cation) NH3 (NH3

þ) in the ground electronic state ~X 1A01
(~X 2A002 ) are shown. Upon strong-field ionization, a nuclear wave packet is launched
into the electronic ground state of the cation, ~X 2A002 , reaching the minimum of the
cation’s potential energy curve on a predicted �8-fs timescale. We probe the geo-
metric structure of the NH3

þ cation by ionizing a neutral NH3 molecule (see black
dot) and emitting an electron wave packet (blue shaded) that recollides back onto
the target NH3

þ ion 7:8� 9:8 fs after ionization (see green dot) through the MIR-
LIED process. The HNH bond angle, UHNH, for the structures shown is indicated.
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with only a brief summary presented here. A cold (T < 100K) ammo-
nia jet (5% NH3, 95% He) was supersonically expanded into an ultra-
high vacuum (UHV) chamber. Here, the interaction with the laser focus
takes place, ionizing the gas. Upon strong-field ionization, the generated
ions and electrons were guided using homogeneous electric (~EÞ and
magnetic (~B ) fields of 34V/cm and 13G, respectively, toward two
opposing time-sensitive microchannel plate (MCP) sensors. These sen-
sors are interfaced with position-sensitive delay-line anode detectors.
The three-dimensional (3D) momentum distribution px; py; and pz

� �

of charged particles is extracted from the time-of-flight (ToF; parallel to
the z-axis) and the ðx; yÞ impact position on the two-dimensional (2D)
detector plane. Charged particles are detected in full electron-ion coinci-
dence, enabling the isolation of different reaction paths.

C. Theoretical framework of LIED retrieval

LIED is a strong field technique, in which a rescattering electron
acquires structural information when scattered off its target in the
presence of a laser field. Therefore, measured momenta contain two
contributions: a momentum shift due to scattering off the target mole-
cule and a momentum shift due to the vector potential of the laser at
the time of rescattering. The value of the vector potential varies during
the laser cycle, and thus imparts different momentum at the varying
times of rescattering during the laser cycle. Under quasi-static (tunnel-
ing) conditions, the exact time variation can, however, be determined
with very good accuracy from the classical recollision model. The vec-
tor potential can be extracted from a measurement of the laser’s peak
intensity directly. We employ another, more accurate way, to extract
the vector potential directly from the identification of the 2 Up turn-
over between direct electrons and the rescattering plateau, and the cut-
off at 10 Up. The value of the electric field, and thus the vector
potential, is found according to Up ¼ E0=4x2. In addition, we deter-
mine the laser peak intensity by fitting the momentum dependent
ionization rate calculated after the Ammosov-Delone-Krainov58

(ADK) theory to the longitudinal ion momentum distribution pkð Þ
of Arþ ions. Both methods work very well and yield I0 ¼ 1:3
�1014 W=cm2 (E0 ¼ 0:06 a:u:Þ. As already mentioned, the measured
electron rescatters from the parent ion in the laser field where it
receives an additional momentum kick from the laser related to its
vector potential, ArðtrÞ, at the time of rescattering, tr, in polarization
direction. Therefore, the final detected momentum, kk (k?), parallel
(perpendicular) to the laser polarization direction is related to the
return momentum, kr , and scattering angle, hr, as kk ¼ �Ar trð Þ
6 krcos hrð Þ and k? ¼ krsin hrð Þ: Fourier transform (FT)-LIED is
based on the measurement of backscattered electrons (i.e., for
hr ¼ 180�), thus yields kr ¼ kresc � ArðtrÞ, where ArðtrÞ is calculated
for a detected momentum, kresc, employing the classical recollision
model which is valid under our quasi-static field conditions. The posi-
tion x t; tbð Þ of the electron in a linearly polarized electric field can
be obtained from the classical equation of motion according
to x t; tbð Þ ¼ E0

x2 ½sinðxtbÞ xDtð Þ þ cos xtð Þ � cos xtbð Þ� þ v0Dt þ x0,
where tb and t are the time of birth and time in the laser field, respec-
tively, and Dt is the difference between tb and t. For quasi-static condi-
tions, the initial velocity, v0, of the electron at the tunnel exit, x0, is
assumed zero. An electron will return to the parent ion when
x tr ; tbð Þ ¼ 0 at the time of rescattering, tr . The equation of motion
can be solved numerically by Newton’s method, and general solutions

are found for electrons tunneling between 0� tb � 0:25 of an optical
cycle and returning between 0:25� tr � 1 of the optical cycle. For a
given tb, its corresponding tr is calculated. In general, there exist two
trajectories, called long and short, which lead to the same final
momenta. However, the long trajectory is born much closer to the
maximum of the laser field. The exponentially dependent ionization
yield, thus, favors the early ionizing long trajectory, which is the reason
why the short trajectory contribution is neglected. With one trajectory
present, the vector potential at tr is obtained as Ar ¼ � E0

x sinðxtrÞ,
making straightforward the reconstruction of kr and allowing to
unambiguously map momentum to time of rescattering.

D. Quantum chemistry calculations

The adiabatic ground state potential energy surfaces (PESs) along
the inversion coordinate of both neutral NH3 (~X 1A01) and cation NH3

þ

(~X 2A002) were calculated at the coupled cluster singles doubles (CCSD)47

level of theory as implemented in the Q-Chem 5.1 quantum chemistry
package.48 The augmented correlation-consistent, polarized valence,
double-zeta Dunning basis set (aug-cc-pVDZ)49 was applied. Permanent
dipole moments (lx, ly, and lz) and static dipole polarizabilities (axx,
ayy, and azz) were calculated at all points of the potential energy surface
(PES). The field-dressed energies were calculated as follows:

E Fð Þ ¼ E0 � l � F � 1
2
a�F2; (1)

where F is the electric field strength, E0 is the field-free Born-
Oppenheimer energy, l is the permanent dipole moment, and a is
the main diagonal of the polarizability tensor. The field strength was
set to 0.06 a.u. (3.1V/Å), corresponding to a laser peak intensity of
1.3� 1014 W/cm2.

All geometries were previously optimized at the second-order
Møller-Plesset (MP2) level of theory using the atomic natural orbital-
relativistic core-correlated basis set with polarized double-zeta contrac-
tion (ANO-RCC-PVDZ)50 in OpenMolcas 8.0.51 A dummy atom (X)
was placed along the z-axis, which is parallel to the C3 principal axis of
NH3, at a distance of 1:0 Å above the nitrogen atom (N). The
H1–N–X, H2–N–X, and H3–N–X angles (b) were constrained to vary
from 130� to 90� in steps of 1� (i.e., total of 41 geometries). Planarity
is therefore defined by b ¼ 90�. Here, the inversion coordinate, Q, is
defined as displacement with respect to the reference geometry in
degrees, where a value of 0� corresponds to planarity (i.e.,
UHNH ¼ 120�). For a negative (positive) value of Q, the nitrogen atom
is located above (below) the plane spanned by the three hydrogen
atoms. A sketch of the described coordinate is shown in Fig. 5.

III. RESULTS AND DISCUSSION
A. FT-LIED analysis

The procedure for retrieving structural information is based on
the Fourier transform (FT) variant of LIED, called FT-LIED,20,23

which is also known as the fixed-angle broadband laser-driven elec-
tron scattering (FABLES)25 method. In the FT-LIED method, Fourier
transforming the coherent molecular interference signal, qM , embed-
ded within the momentum distribution of the backscattered highly
energetic electrons (i.e., hr ¼ 180�) directly provides an image of the
molecular structure in the far-field. The key benefit of the FT-LIED
scheme is its ability to empirically retrieve the background incoherent
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sum of atomic scatterings, qA, that contributes to the total detected
interference signal, qE . Thus, the qM can be obtained from qE by sub-
tracting the empirically retrieved qA to directly retrieve the molecular
structure without the use of theoretical fitting, retrieval, or modeling
algorithms.

Figure 2 shows the logarithmically scaled momentum distribu-
tion of longitudinal (Pk; parallel to the laser polarization) and trans-
verse (P?; perpendicular to the laser polarization) momenta for
electrons detected in coincidence with the NH3

þ molecular ion. Direct
electrons oscillate away from the parent ion without rescattering, with
a momentum obtained initially by the vector potential of the laser
field, A trð Þ, at the instance of rescattering, tr. Hence, the maximum
kinetic energy that the electron can gain is 2Up (i.e., momentum
Pk � 4:2 a.u). Rescattered electrons, however, propagate further in the
field, acquiring significantly higher kinetic energy after recolliding
against the parent ion at tr with an appreciably large return momen-
tum, kr. Additionally, the rescattered electron is also “kicked” by the
laser field at tr, receiving an additional momentum in the polarization
direction. Therefore, the total detected momentum, kresc, is related to
the return momentum at the instance of rescattering, kr, and the
momentum “kick” obtained by the vector potential, AðtrÞ, of the laser
field through kresc ¼ kr þ AðtrÞ (see the sketch in Fig. 2). The overall
maximum kinetic energy obtained by the rescattered electrons is ten
times the ponderomotive potential (10UpÞ(i.e., Pk ¼ 9:4 a.u.) for back-
scattered electrons. In this sense, the elastically rescattered electrons,
which contain structural information, can be distinguished from the
direct electrons in the kinetic energy spectrum (momentum distribu-
tion) for energies of 2Up � Eresc � 10Up (4:2 � Pk � 9:4 a.u.).

Since the FT-LIED method is applied, only coincidence electrons
with a returning momentum of kr > 2:1 a.u. (i.e., Pk > 4:2 a.u.) and
increasing rescattering angles, Dhr, from 2 to 10� around the backscat-
tering angle of hr ¼ 180� are analyzed. At low kr, a small Dhr is taken
to avoid appreciable contributions from direct electrons, which do not
contain structural information. While at appreciably large enough Pk,
larger values of Dh can be taken for higher kr since direct electrons do
not contribute in this momentum region as they are significantly less
energetic than the rescattered electrons. The interference signal is
extracted by integrating an area indicated by a block arc in momentum
space, as shown schematically in Fig. 2(b), at various vector potential
kicks, Ar.

B. Electron-ion 3D coincidence detection

In strong-field LIED studies, other events aside from elastic scat-
tering of the tunnel-ionized electrons will occur. For example, more
than one electron can be removed from the molecule, leading to the
Coulomb explosion of multiply charged NH3

nþ and the subsequent
production of NH2

þ and Hþ ions and corresponding electrons.
Moreover, there may also be contributions to the overall signal from
background molecules existing in the main chamber, generating ion
species that are not of interest in this study (e.g., H2O

þ, N2
þ, or O2

þ).
All of these background ions and their corresponding electrons are
detected in our spectrometer along with our molecular ion of interest,
NH3

þ, which is the main peak at approximately 4.1 ls in the ion
time-of-flight (ToF) spectrum shown in Fig. 3(a). Electrons corre-
sponding to background ions contribute to an unwanted background
signal in the FT-LIED analysis process, impeding structure retrieval
when averaging over all molecular ionization channels. Electron-ion
coincidence detection is implemented to ensure that the LIED interfer-
ence signal originates only from our ion of interest (i.e., NH3

þ). To
highlight the importance of coincidence detection, the total electron
signal for all ions (petrol blue) and those electrons detected in coinci-
dence with NH3

þ (orange) are shown in Fig. 3(b). In both distribu-
tions, the 2Up and 10Up classical cutoffs are clearly visible (vertical
dashed lines). An order-of-magnitude difference in the number of
electron counts is observed in the rescattering frame. Furthermore, the
inset panel in Fig. 3(b) emphasizes the more pronounced oscillations,
arising from the molecular interference signal observed in the NH3

þ

FIG. 2. FT-LIED extraction. Logarithmically scaled momentum distribution of elec-
trons detected in coincidence with NH3

þ fragments only, given in atomic units
(a.u.). The return momentum, kr , at the time of rescattering, tr , is obtained by sub-
tracting the vector potential, AðtrÞ, from the detected rescattering momentum, kresc,
given by kr ¼ kresc – AðtrÞ. The energy-dependent interference signal is extracted
by integrating the area indicated by a block arc at different vector potential kicks
along P?¼ 0. The block arc is given by a small range of rescattering angles and
momenta, Dhr and Dkr , respectively. We used Dkr ¼ 0.2 a.u. together with pro-
gressively increasing the Dhr values from 2� to 10� with increasing kresc.

FIG. 3. Electron-ion coincidence detection. (a) Ion time-of-flight (ToF) spectrum,
with the main ToF peak near 4.1 ls corresponding to the molecular ion of interest,
NH3
þ (orange). (b) The signal as a function of rescattered kinetic energy given in

ponderomotive energy, Up, for all electrons (petrol blue) and those electrons
detected in coincidence with NH3

þ (orange). The inset shows a detailed view of the
electron signal in the rescattering regime (i.e., 2–10 Up) with both distributions over-
laid on top of each other, highlighting the importance of coincidence detection; the
NH3
þ electron distribution was scaled by a factor of 50.

Structural Dynamics ARTICLE scitation.org/journal/sdy

Struct. Dyn. 8, 014301 (2021); doi: 10.1063/4.0000046 8, 014301-4

VC Author(s) 2021

https://scitation.org/journal/sdy


coincidence distribution (orange) as compared to the “all electrons”
distribution (petrol blue).

C. Molecular structure retrieval

Electrons detected in coincidence with NH3
þ ions are plotted in

Fig. 4(a) as a function of return kinetic energy in the range of
40–350 eV corresponding to the rescattering plateau of 2Up–10Up

range. The experimentally measured molecular backscattered electron
distributions (qE) (orange solid trace) contain contributions from both
the incoherent sum of atomic scatterings—which is independent of
molecular structure, and thus serves as a background (qB) signal—and
the coherent molecular interference signal (qM). We calculate the
LIED interference signal by subtracting an empirically determined
background (by fitting a third-order polynomial function) from the
logarithm of qE,

20 given by

qM ¼ log 10ðqEÞ � log 10ðqBÞ ¼ log 10ðqE=qBÞ; (2)

and is plotted in Fig. 4(b) as a function of momentum transfer,
q ¼ 2kr, in the back-rescattered frame. Observed oscillations in the
interference signal (orange solid trace) provide a unique, sensitive sig-
nature of the molecular structure, with the orange (gray) shaded
regions.

The fast Fourier transform (FFT) spectrum generated from the
molecular interference signal, embedded within the interference signal
[Fig. 4(b)], is shown in Fig. 4(c). Before transforming, a Kaiser win-
dow52 (b ¼ 0) and zero padding53 are applied. The FFT spectrum
(orange solid trace), individual Gaussian fits (gray dotted traces), and
the sum of the two Gaussian fits (blue solid trace) are presented. The
center position of the individual Gaussian fits of the two FFT peaks
appears at 1.31 6 0.03 Å and 2.24 6 0.03 Å, respectively, as shown in
the sketch of Fig. 4(d). Table I shows the N–H internuclear distance
reported for neutral NH3 in the ground electronic state and NH3

þ

FIG. 4. Molecular structure retrieval. (a) Modulated total interference signal (orange solid trace) and its estimated Poissonian statistical error (orange shaded region) together
with the measured longitudinal momentum error (gray shaded region) are shown with the background atomic signal empirically extracted using a third-order polynomial fit
(black-dotted trace). (b) LIED interference signal plotted as a function of momentum transfer, q ¼ 2kr , in the back-rescattered frame. The orange shaded region corresponds
to the Poissonian statistical error, and the gray shaded region corresponds to the detected longitudinal momentum error. (c) Fast Fourier spectrum (blue solid trace) along with
the individual (gray dashed traces) and sum (blue solid trace) of Gaussian fits. Orange (gray) shaded region represents the FFT spectra for the two extrema of the Poissonian
(momentum) error. The black vertical dotted lines indicate the mean center positions of the two Fourier peaks corresponding to the N–H and H–H internuclear distances, RNH
and RHH, respectively. We note that the peaks above 3 Å could arise from the formation of clusters and are in accordance with Refs. [54] and [55]. (d) Sketch of the measured
NH3

þ LIED structure together with field-free equilibrium NH3
þ ground state structure is shown. The following geometrical parameters were extracted: RNH ¼ 1:316 0:03 Å;

RHH ¼ 2:246 0:03 Å; and H–N–H bond angle, UHNH ¼ 1176 5�.
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cation in the ground and first excited electronic state. Comparing our
FFT spectrum shown in Fig. 4(c) to the data in Table I, it is clear that
the first FFT peak at 1.31 6 0.03 Å corresponds to the N–H internu-
clear distance, RNH, while the second FFT peak at 2.24 6 0.03 Å corre-
sponds to the H–H internuclear distance, RHH. The FT-LIED-
measured internuclear distances correspond to an H–N–H bond
angle, UHNH, of 117 6 5� (see the supplementary material for further
details). We note that the peaks above 3 Å could arise from clusters of
ammonia, which have been reported to have a center-of-mass (i.e.,
N–N) distance of between 3.2 and 5.2 Å and full H–H distances within
a cluster of up to 8 Å.54,55

D. Quantum chemistry calculations

To aid in our interpretation and understanding of the FT-LIED-
measured NH3

þ structure, we investigate the pyramidal-to-planar geo-
metrical transition that ammonia undergoes following strong-field
ionization. We perform quantum chemical ab initio calculations of
field-free (black solid curves) and field-dressed (colored dashed curves)
ground state potential energy curves (PECs) of neutral NH3 (bottom
panel) and NH3

þ cation (top panel), as shown in Fig. 5. The inversion
coordinate (Q) employed is also shown at the bottom left side of Fig. 5.

A value of 0� corresponds to planarity. For Q < 0 (Q > 0), the
nitrogen atom is located above (below) the plane spanned by the three
hydrogen atoms. The pyramidal-to-planar transition is initiated at the
time of ionization (t ¼ 0 fs), where a nuclear wave packet (NWP) in
the neutral ammonia is transferred to the PES of the NH3

þ cation.
Kraus and W€orner34 calculated that the NWP in field-free NH3

þ

reaches the equilibrium planar structure (i.e., Q ¼ 0�; UHNH ¼ 120�Þ
at 7.9 fs.34 Thus, the equilibrium planar structure could be directly
retrieved with MIR-LIED since the emitted LIED electron takes
7.8–9.8 fs to be accelerated and driven back to the NH3

þ parent ion
by the laser field. In fact, we resolve an H–N–H bond angle of
UHNH ¼ 1176 5� for the FT-LIED field-dressed NH3

þ structure. Our
measured near-planar structure may be due to one or a combination
of the following reasons: (i) the field strength, F, used in the calcula-
tions of Ref. [34] corresponded to a significantly different peak pulse
intensity (5.0� 1013 W/cm2), compared to the one used in our experi-
mental conditions (1.3 � 1014 W/cm2); (ii) the NWP was propagated
on field-free potentials,57 neglecting the important effects of the strong
laser field; (iii) the model of Ref. 34 also neglects dynamics induced by
the strong laser field that may occur in the neutral molecule prior to
ionization. To account for the non-negligible contribution of the MIR
laser field, we calculated field-dressed Born–Oppenheimer curves with
the field strength set to the corresponding peak intensity 1.3 � 1014

W/cm2 (i.e., 3.1V/Å), as shown in Fig. 5. Orange (blue) dashed curves
show the field-dressing when the polarization vector is parallel, F> 0

(antiparallel, F< 0) to the static dipole moment of the ammonia mole-
cule. Importantly, the field-free planar equilibrium cationic structure
has now been shifted toward a bent field-dressed structure (i.e.,
Q ¼ �14�; UHNH ¼ 114�) caused by the strong laser field, dressing
the molecule. There is an excellent agreement between our measured
FT-LIED field-dressed NH3

þ structure (UHNH ¼ 1176 5�) and the
calculated equilibrium geometry of the field-dressed ground cationic

state (U
~X 2A002
HNH ¼ 114�). It should be noted that the calculations pre-

sented in this work are static in nature, and that quantum dynamical
calculations will be required to further investigate the time-resolved
nature of this field-dressed system, which are planned in future
investigations.

IV. CONCLUSIONS

In summary, we directly retrieve the geometric structure of
NH3

þ with picometer spatial and femtosecond temporal resolution
using MIR FT-LIED. We use strong external fields (i.e., 3.1V/Å) to
investigate the response of an isolated ammonia molecule to strong-
field ionization and the subsequently induced pyramidal-to-planar
transition dynamics. We identified a near-planar ammonia cation
with a H–N–H bond angle of UHNH ¼ 1176 5�. We calculate the
field-dressed PECs of NH3

þ and show that the equilibrium field-
dressed structure is distorted by the intense laser field, compared to
the corresponding field-free case (UFF

HNH ¼ 120�). The minimum of
the field-dressed PEC displaced toward a more bent, near-planar

TABLE I. Field-free equilibrium geometrical parameters of NH3 and NH3
þ. The N–H

and H–H internuclear distances, RNH and RHH, respectively, and the H–N–H angle,
UHNH, for neutral NH3 in the ground electronic state.

56 The same geometric parame-
ters for NH3

þ in the ground57 electronic state are also presented.

RNH Åð Þ RHH Åð Þ UHNH degð Þ

NH3 (~X
1
A01) 1.030 1.662 107

NH3
þ (~X

2
A002) 1.023 … 120

FIG. 5. Quantum chemistry calculations. Ground state field-free PECs along the
inversion coordinate for neutral NH3 (~X

1
A01) (bottom, solid black curve) and cation

NH3
þ (~X

2
A002 ) (top, solid black curve), and the corresponding field-dressed curves

(dashed colored traces) with a field strength of 3.1 V=Å (i.e., I0¼ 1:3� 1014 W/
cm2). The polarization vector points along the static dipole moment of the molecule.
Field-dressed PECs for the field pointing parallel to the dipole moment vector of the
molecule (orange dashed curve; F> 0) and antiparallel (blue dashed curve; F< 0)
are shown. On the bottom left, a sketch of the geometry of the ammonia molecule
is shown, showing the H–N–H bond angle, UHNH, the inversion coordinate
employed, Q, and the C3 rotation axis.
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structure (UFD
HNH ¼ 114�), which has a excellent agreement with our

FT-LIED-measured NH3
þ structure. Additionally, it would be benefi-

cial to study the dynamics of the ammonia system through quantum-
dynamical wave-packet calculations that also include the interaction of
the molecule with the intense laser field to further confirm the experi-
mental results.

SUPPLEMENTARY MATERIAL

See the supplementary material for the description of the struc-
tural retrieval process and the determination of the uncertainty in the
extracted structural parameters.
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