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Intense lasers can easily drive nonadiabatic transitions of excited electron wave packets across the Brillouin
zones, thus transition dipole moments (TDM) between energy bands of solids should be continuous, satisfying
crystal symmetry, and periodic at zone boundaries. While current ab initio algorithms are powerful in calculating
band structures of solids, they all introduced random phases into the eigenfunctions at each crystal momentum
k. Here we show how to choose a “smooth-periodic” gauge where TDMs can be smooth versus k, preserving
crystal symmetry, as well as maintaining periodic at boundaries. The symmetry properties of TDMs with respect
to k ensure the absence of even-order harmonics from MgO with inversion symmetry, while the TDM in the
“smooth-periodic” gauge for broken-symmetry ZnO is responsible for even harmonics that were underestimated
in previous simulations. These results reveal the importance of correctly treating the complex TDMs that satisfy
crystal symmetry and continuous across zone boundaries in nonlinear laser-solid interactions, which has been
elusive in most theories so far.
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I. INTRODUCTION

In quantum mechanics, band theory is the foundation for
understanding the structure of solids and their interactions
with lights. To interpret a plethora of experiments on all kinds
of condensed materials, ab initio computer codes have been
developed and the values of such packages are well recog-
nized. In recent years, with the advent of intense lasers and
their nonlinear interactions with solids, ultrafast phenomena
like high-order harmonic generation (HHG) [1–5], laser-
induced charge transfer [6–10], Bloch oscillation [11–13],
laser-controlled dielectrics [14,15], and ultrafast renormaliza-
tion [16–18] have been widely investigated. The equations
of motion based on band theory and crystal-momentum
representation, for example, semiconductor Bloch equations
(SBEs) [19–24] and other extended forms [25–27], have
already been used to interpret these nonlinear ultrafast phe-
nomena. The related theoretical methods were summarized
in the review [28]. However, true quantitative comparison
between theoretical results with experiments remains a chal-
lenge, despite that the band structure and transition dipoles
were calculated from advanced ab initio codes.

In the interaction of strong lasers with solids, nonadia-
batic transitions of electrons between bands are important,
since the excited electron wave packet can even go across
the first Brillouin zone. When the carrier is moving along
a path in the k space, the wave packet will acquire a dy-
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namical phase and a geometry phase [29,30]. Previously, the
geometric phase was mostly considered only for closed paths
to ensure the theory is gauge independent. However, as shown
recently [31,32], in the SBE method for high-order harmonic
generation in solids, gauge invariance is achieved when the
correct phase of the transition dipole moment (TDM) is in-
cluded in the SBEs. In principle, the combination of geometry
phase and dipole phase is well-defined whether the system
is open or closed [32]. Both of these two phases will be en-
coded in the macroscopic polarization, and thus the photonic
signal [30].

In order to describe the interaction of strong laser fields
with solids in a finite k space including the phase accumulated
by the moving wave packet, it requires that (i) the TDMs
should be calculated accurately for the whole first Brillouin
zone; (ii) the TDMs with k-dependent phase should be contin-
uous and periodic with respect to k. Using ab initio software
to calculate accurate absolute values of TDMs, Yu et al. [33]
were able to obtain improved HHG spectra. However, since
all ab initio algorithms calculated the eigenfunctions at each k
separately, random phases are introduced at each k point and
the phase of the TDM is not smooth and continuous. By noting
the importance of the TDM phase, Jiang et al. [34] obtained
the smooth phase analytically using the tight-binding model.
They were able to reproduce the orientation dependence of
the HHG spectra from ZnO reported by Ghimire et al. [1] and
Gholam-Mirzaei et al. [2]. However, the tight-binding model
is too primitive and there remains quantitative discrepancies
with experiments. For accurate HHG theories, it is desirable to
obtain an ambiguity-free phase for the TDM calculated from
ab initio algorithms.
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The problem of a random phase in TDM has been well
recognized and studied for a long time [35–38] and solutions
have been suggested there. The robust methods are step-by-
step gauge transformation on the k grid [35] and utilizing
basis constructed by symmetry-adapted maximally localized
Wannier wave functions [39,40]. The latter has been included
in the new release of WANNIER90 [41]. These two methods
are noticed in the community of strong-field physics since
the recent work from Ivanov’s group [42]. The problem of a
random phase can also be avoided by solving time-dependent
Kohn-Sham equation in real space [43,44] or solving SBEs in
velocity gauge [45]. In the previous works on solid HHG, the
commonly used “smooth procedure” to fix the random phase
in the k grid is the one suggested in Ref. [38]. This method will
introduce Zak’s phase [46] into the eigenfunctions and then
break the periodicity of the TDMs which was also mentioned
in Ref. [45]. In the present paper, we point out that this kind of
“smooth procedure” is not robust, and is valid only for trivial
systems [31,47].

In this paper we will obtain smooth TDM phase that also
satisfies periodic conditions of the crystal by introducing what
we will call the “smooth-periodic” gauge to distinguish it
from the “periodic gauge”. We first summarize the “smooth
procedure”, then address systems with and without inversion
symmetry. In this “smooth-periodic” gauge, the symmetry
properties of k-dependent eigenfunctions and TDMs for sys-
tem with inversion symmetry are retained. Such symmetry
properties would ensure the absence of even-order harmonics
driven by long pulses even if multiband excitations are in-
cluded. Using such TDMs, we calculated the harmonic spectra
of MgO and found improved agreement with earlier experi-
ment. Similarly, we also revisited the HHG spectra of ZnO in
the direction with broken symmetry. While even harmonics of
ZnO were predicted by Jiang et al. [34], the signals were much
too weak relative to the odd harmonics. With TDMs calculated
using the “smooth-periodic” gauge, the even harmonics were
greatly enhanced and become comparable to odd harmonics.

II. THE COMMONLY USED “SMOOTH PROCEDURE”
AND ITS DEFICIENCY

It is necessary to show this method briefly here. The Bloch
wave function is expressed as �m(k, r) = eikrum(k, r) where
um(k, r) is periodic um(k, r) = um(k, r + R), with R being the
lattice spacing. In most ab initio software, the periodic part
is expanded by plane waves um(k, r)= ∑

h a(k + Gh)eiGhr .
In principle, the Bloch functions are periodic in k space
�m(k, r) = �m(k+G, r). Here, G is the reciprocal lattice
vector. The eigenfunctions are obtained separately for dif-
ferent k points, which leads to random phases ϕm(k), u′

m =
um(k, r)eiϕm (k). Note that ϕm(k) is randomly generated and is
discrete with respect to k.

In the “smooth procedure”, a complex number zm(k) is
defined by

zm(k)=|zm(k)|eiαm (k) = 〈u′
m(k, r)|u′

m(k + �k, r)〉. (1)

A new wave function is constructed by

u′′
m(k + �k, r)=u′

m(k + �k, r)e−iαm (k). (2)

By renaming the function u′′
m(k + �k, r) according to

u′′
m(k + �k, r) → u′

m(k + �k, r), (3)

the same procedure can be repeated with the next point u′
m(k +

2�k, r). When this procedure goes over the first Brillouin
zone, the phase-modified wave function become continuous
with respect to k. We rename the final wave function after
the “smooth procedure” as us

m(k, r) to distinguish it from the
original one generated by ab initio software. The detail of the
“smooth procedure” can also be found in Ref. [38] by Hjelm
and coworkers.

Since �k is small,

〈u′
m(k, r)|u′

m(k + �k, r)〉
≈ e�k〈um (k,r)|∇kum (k,r)〉+i(ϕm (k+�k)−ϕm (k)), (4)

which leads to

u′′
m(k + �k, r) = um(k + �k, r)e−�k〈um (k,r)|∇kum (k,r)〉+iϕm (k).

(5)

As the procedure of Eqs. (1)–(3) goes through the path k0 →
k0 + k, the phase-modified wave function becomes

u′
m(k, r) = um(k, r)ei

∫ k
k0

dkDmm (k)eiϕm (k0 ), (6)

where Dmm(k) = i〈um(k, r)|∇kum(k, r)〉 is the Berry connec-
tion.

To conclude, this method forces the wave function to
be continuous with respect to k, and the new Berry con-
nection Ds

mm(k) = i〈us
m(k, r)|∇kus

m(k, r)〉 = 0. Meanwhile, at
the same time this method introduces a phase �m(k) =∫ k

k0
dκDmm(κ ) + ϕm(k0) to the eigenfunction. The additional

phase �m(k) will break the periodicity of the eigenfunction. In
the following two sections, we will provide different methods
to deal with the nonperiodicity for systems with and without
inversion symmetry.

III. SYSTEM WITH INVERSION SYMMETRY

The eigenfunction um(k) = ∑
h a(k + Gh)eiGhr is defined

in the “periodic gauge” [48]. As shown by Zak [46], the
Zak’s phase γ = ∫ k+G

k dκDmm(κ ) is equal to zero or π in the
“periodic gauge”. Thus, for system with inversion symmetry,
the simplest way for the “smooth procedure” is to extend it
to the second Brillouin zone. In this way, phase difference
between the starting point k0 and k0 + 2G is zero or 2π , which
means that the periodicity of eigenfunctions in k space is 2G.

In this section, rocksalt MgO with inversion symmetry is
taken as example to explain our method. Figure 1(b) shows the
band structure of MgO along (−1, 0,−1) → 
(0, 0, 0) →
(1, 0, 1). Figures 1(c)–1(h) are the corresponding TDMs cal-
culated by the “smooth procedure” between different pairs
of bands. The eigenfunctions are calculated by the density
functional theory (DFT) package in VASP [49] using the
Perdew-Burke-Ernzeroff generalize gradient approximation
functional. The cutoff energy of plane wave is 500 eV. Since
the DFT simulation underestimates the band gap, the con-
duction bands are shifted to get better agreement with the
experimental gap 7.8 eV. As expected, both the energy bands
and TDMs are periodic with 2G.
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FIG. 1. (a) Geometric structure of rocksalt MgO crystal. Red and
green balls are O and Mg, respectively. (b) Band structure along
the 
-X axis. (c)–(h) Real (black line) and imaginary (red line)
part of TDMs generated by the “smooth procedure” in the extended
Brillouin zone.

In Fig. 2, we present the HHG spectra calculated by solving
SBEs with one valence band (band 2) and two conduction
bands (band 3 and band 4) included. The spectra show two
plateaus, with the right side of the dashed line being from
the recombination of electron-hole pair from the second con-
duction band (band 4) to the valence band (band 2) [30].
To the left, which is due to recombination from band 3, the
green arrow marks a minimum, which is similar to the Cooper
minimum in atoms. Such a minimum originates from the
minimum of the absolute value of the dipole moment between
band 2 and band 3. This minimum has also been found in the
time-dependent DFT simulation in Ref. [50]. Thus, it would
be of interest to see if this minimum can be observed in exper-

FIG. 2. HHG spectrum from MgO calculated by 1D three-band
SBEs. The equations are solved in the extended Brillouin zone and all
the elements used in the SBE model are from Fig. 1. Laser parameter:
30 fs, 1300 nm, 1×1013 W/cm2.

FIG. 3. Comparison between experimental and calculated CEP
dependent HHG from MgO. (a), (c), and (d) are reprinted with
permission from Ref. [30] ®. The Optical Society. (b), (e), and (f)
are the calculated spectrum along 
-X. Laser parameter: 1700 nm,
10 fs, 4×1013 W/cm2.

iments if the detected photon energy range can be extended
[30,51,52]. This kind of minimum will be discussed in detail
in another paper [53].

From the analysis of Sec. II, after the “smooth procedure”,
the newly derived eigenfunction us

m(k, r) satisfies the strict pe-
riodic boundary condition us

m(k, r) = ei2Grus
m(k + 2G, r) and

us
m(k, r) = ei2Grus

m(k, r+R). One still would like to know the
symmetry properties of the TDMs for systems with inversion
symmetry. The results are summarized in Table I while the
derivation is given in the Appendix. When the periodic func-
tions us

m(k, r) and us
n(k, r) have the same parity, the TDM

between band m and n is an odd function with respect to k.
When they have opposite parity, the TDMs between them is an
even function with respect to k. In a three-band model, there
are many pathways to generate excitations. Take the MgO
example, one possibility is to choose a path band 2 → 3 → 4.
The corresponding macroscopic polarization is given by

P(t ) ∼ P(k0, t ) + P(−k0, t )

= D24(k0 + A(t ))D43(k0 + A(t ))D32(k0 + A(t ))E (t )2

+ D24(−k0 + A(t ))D43(−k0 + A(t ))D32(−k0 + A(t ))E (t )2

+ c.c. (7)

Here E (t) and A(t) are electric field and vector potential,
respectively. If the driven laser is a long pulse, E (t + T/2) =
−E (t ) and A(t + T/2) = −A(t ), where T is the optical cycle
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TABLE I. Properties of TDMs for different “parities” of eigenfunctions.

us
m(k, r) us

n(k, r) Ds
mn(k)

us
m(−k, r) = us

m(k,−r) us
n(−k, r) = us

n(k, −r) Ds
mn(−k) = −Ds

mn(k)

us
m(−k, r) = us

m(k,−r) us
n(−k, r) = −us

n(k,−r) Ds
mn(−k) = Ds

mn(k)

us
m(−k, r) = −us

m(k,−r) us
n(−k, r) = us

n(k, −r) Ds
mn(−k) = Ds

mn(k)

us
m(−k, r) = −us

m(k,−r) us
n(−k, r) = −us

n(k,−r) Ds
mn(−k) = −Ds

mn(k)

of the laser. Thus, we can get

P(t+T/2) ∼ P(k0, t+T/2) + P(−k0, t + T/2)

= D24(k0 − A(t ))D43(k0 − A(t ))D32(k0 − A(t ))E (t )2

+ D24(−k0 − A(t ))D43(−k0 − A(t ))D32(−k0 − A(t ))E (t )2

+ c.c. (8)

By comparing Eqs. (7) and (8) and using the properties
listed in Table I, we can find that P(t ) = −P(t+T/2) [the par-
ities of the wave functions for these three bands are shown in
Fig. 5(b)]. The odd parity of macroscopic polarization, similar
to the case for an atomic target, guarantees that no even-order
harmonics in the spectra. If the parities of TDMs have not
accounted for, odd symmetric macroscopic polarization is not
present. In other words, because of the parities of TDMs,
coupling of multiple bands cannot generate even harmonics
if the system has inversion symmetry.

Using the more accurate band structure and dipole mo-
ments, in particular, the new dipole phases constructed in the
present “smooth-periodic” gauge, we can improve the sim-
ulation reported in Ref. [30] where the dipole moments have
been set to be constant. Comparison of carrier-envelope-phase
(CEP) dependent spectra between experimental data and our

FIG. 4. HHG spectra from MgO using different TDMs. Black
line is the same as Fig. 3(c): harmonic spectrum calculated using
correct dipole moments [Dc1c2 (k) is odd, Dvc2 (k)] and Dvc1 (k) are
even functions of k). Red line: The same as the black line except
that Dc1c2 (k) is changed to an even function of k artificially. The
subscripts v, c1, c2 represent the valence band, first conduction band
and second conduction band, respectively. The intensities of the
spectra in the right side of the vertical solid line were multiplied by
a factor of 4.

simulation is presented in Figs. 3(a) and 3(b). The laser pa-
rameters used in the simulation can be found in the caption.
Many features in the experimental data are reproduced in
the present simulation. (i) In Fig. 3(a), the slope of photon
energy versus the CEP has been reproduced in Fig. 3(b). (ii)
Both experiment and simulation show two plateaus, in the
same photon energy region. (iii) In Fig. 3(b), our simulation
indicates a minimum around 13 eV, which is consistent with
experiment even though it is near the low energy end of
the experimental data, thus it cannot be ruled out that the
minimum is due to detector efficiency in the energy region.
Note that this minimum also appears in Fig. 2 at the 15th
order harmonic. Comparing with the simulations reported in
Ref. [30], we have witnessed significant improvement in the
present improved theory.

Figures 3(c)–3(f) compare the HHG spectra at two CEPs,
0.5 π and 0.0, between experiment and the present simulation.
It is clear that the sinelike pulse (CEP = 0.5 π ) would generate
sharper discrete harmonics, while a cosinelike pulse would
produce relatively flatter ones. Such results are in agreement
with the measurements.

In this article, we are concerned with how harmonic spectra
are affected if the parity and periodicity of transition dipole
moments are not correctly accounted for. In many prior calcu-
lations, approximations were made in which the k-dependent
dipole moments were taken to be its absolute values. This
means that it is an even function with respect to k. In the
three-band model for MgO, using the method presented here,
Dc1c2 (k), which is the coupling between the two conduction
bands, is an odd function. If we arbitrarily change it to an even
function, how would the HHG spectra be altered? Figure 4
shows the original spectra copied from Fig. 3(c) (in black

FIG. 5. Illustration of transition paths of electrons for gases and
solids with inversion symmetry. For the gas phase, a triangular sys-
tem will never be formed because transition between states with same
parity is forbidden. For the solid case where the energy levels are
extended into bands, transitions between bands at these k points away
from 
 are not forbidden. The symmetry properties of the TDMs will
ensure the absence of even order optical signal.
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FIG. 6. Dipole phase of wurtzite ZnO crystal and simulated HHG. (a) Red line is the k-dependent dipole phase generated by “smooth
procedure”. Such a phase is not periodic because of the DC term in the additionally introduced phase. The black line is the k-dependent dipole
phase after the DC component is taken away as introduced in this article. (b) HHG spectra from ZnO. The green line is the experimental data,
the blue line is calculated by two-band SBEs with elements obtained from ab initio software with the help of the present “smooth-periodic”
procedure. The red line is from calculations where the dipole phases are calculated from the tight-binding model. The red line and experimental
data are copied from our previous work [34]. To present clear comparison, the spectra are shifted vertically.

lines) and compare it to HHG spectra (in red lines) if Dc1c2 (k)
is changed to an even function. For the first plateau harmonics,
no significant changes occur since the first plateau is due to
recombination of electrons from the first conduction band to
the valence band. For the harmonics in the second plateau, we
can see the change as the harmonic peaks are shifted. Based
on Eqs. (7), (8) and the analysis in Ref. [30], the peaks in
the secondary plateau are given by ω = (2n − 1 − θ/π )ω0,
where ω0 is the frequency of the driving pulse and the phase
θ is the phase difference between the two pathways to reach
the conduction band 2. By changing the parity of Dc1c2 (k)
artificially from odd to even, the peaks in the second plateau
will be given by ω = (2n − θ/π )ω0. This can explain the
shift of the peaks in the secondary plateau shown in Fig. 4.
Thus, if the parity of the dipole moment has wrong parity, the
generated harmonic spectra will be quite different.

We conclude this section by illustrating the difference be-
tween gas phase and solids, as shown in Fig. 5. In the gaseous
medium with inversion symmetry, a triangular system will
never be formed because of the parity of the wave function.
For crystal with inversion symmetry where energy level is
expanded into a band, a triangle system can be formed for k
away from the 
 point, but the parity of the TDMs will prevent
the generation of even-order harmonics.

IV. SYSTEM WITH BROKEN SYMMETRY

For system with broken symmetry, the Zak’s phase can be
any value. Thus, the method above for system with inversion
symmetry is not valid anymore. Note that in the periodic
gauge the Berry connection is periodic Dmm(k) = Dmm(k +
G), which means it can be expanded as

Dmm(k) = gm(k) + σm, (9)

where gm(k) = ∑+∞
n=1 f1(n) cos(nLk) + f2(n) sin(nLk) is the

“Alternating Current (AC)” component and σm is a con-
stant which can be regarded as the “Direct Current (DC)”
component. The DC component will lead to divergence of
the introduced additional phase �m(k) = ∫ k

k0
dκDmm(κ ) +

ϕm(k0). We do not need to care about the AC part, because
this component would not influence the periodicity, the conti-
nuity, and the final observable physical quantities [27]. If the
“smooth procedure” is carried out for the first Brillouin zone,
the DC-induced nonperiodic phase of the TDMs between
band m and n is −(σm − σn)k.

Here we take the direction 
 − A of wurtzite ZnO as an
example. In Fig. 6(a), the red line is the k-dependent dipole
phase for the first Brillouin zone obtained from VASP using
a “smooth procedure”. As stated above, the dipole phase
cannot be ensured to be periodic because of the DC compo-
nent. However, it is easy to get the slope by −(σm − σn) =
(αmn(π/L) − αmn(−π/L))/G. Here, αmn(±π/L) are the
phase of TDMs, which are read from the data generated by
the “smooth procedure” shown by the red line in Fig. 6(a). We
can then get the periodic dipole phase by subtracting the DC
part off

Dp
mn(k) = Ds

mn(k)ei(σm−σn )k = Ds
mn(k)e−i(αmn(π/L)−αmn(−π/L))k/G,

(10)
which is shown by the black line in Fig. 6(a) for ZnO. At
the same time, the Berry connection is changed from zero
to Dp

mm(k) − Dp
nn(k) = σm − σn. With that, all the elements in

the SBE model are periodic and continuous with respect to
k. This means that the equation of motion for carriers can be
solved in a finite k space. In Fig. 6(b), the calculated HHG
spectrum (blue line) by solving two-band SBE model using
TDMs obtained by our “smooth-periodic” procedure is com-
pared to the experimental data (green line). We also present
the spectrum (red line) by solving two-band SBEs including
only dipole phase obtained from the tight-binding model.
Even though the tight-binding model can approximatively
reproduce the orientation-dependent feature of HHG spectra,
usually it is too primitive to produce the relative strength
between odd and even order harmonics. Using accurate TDMs
obtained from ab initio software with the help of our “smooth-
periodic” procedure, the experimental spectra of ZnO reported
in Ghimire et al. (1) has finally been satisfactorily reproduced
theoretically.
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V. CONCLUSION

Although ab initio software has been widely used to in-
vestigate electronic properties recently, the random phase
generated in the algorithms prevents its application to cal-
culate nonadiabatic dynamics, especially when the external
field is a strong laser. In this article, we first show that the
commonly used “smooth procedure” cannot ensure the peri-
odicity of the wave function. Second, we provide two different
methods to overcome this defect for systems with and without
inversion symmetry. Because our approaches ensure continu-
ity and periodicity of all the elements used in the equations
of motion, the gauge resulting by the transformation of our
methods can be referred to as a “smooth-periodic” gauge to
distinguish it from “periodic” gauge used by Resta [48]. Based
on this gauge, HHG spectra from solids with and without
inversion symmetry are revisited. It is emphasized that sym-
metry properties are the key factors to ensure the absence of
even order harmonics for systems with inversion symmetry.
With the accurate TMDs with dipole phase and Berry con-
nection, the HHG spectrum from ZnO with broken symmetry
is also improved greatly. The TMDs introduced in this work
is fundamental to all applications relating to optical signals
from solids, such as laser wave-form control, band/dipole re-
construction, and detecting dynamic information. They should
be used in any strong field theories for interpreting nonlinear
interactions of laser lights with periodic materials.
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APPENDIX: DERIVATION OF THE PARITIES
OF TRANSITION DIPOLE MOMENTS

Both us
m(k, r) and ukp

m (k, r) satisfy the k · p equation,(
−1

2
∇2

r + V (r) − ik · ∇r

)
us(kp)

m (k, r)

=
(

Em(k) − k2

2

)
us(kp)

m (k, r), (A1)

where ukp
m (k, r) is assumed to satisfy

ukp
m (−k, r) = ukp∗

m (k, r). (A2)

When the system has inversion symmetry

ukp
m (−k, r) = ±ukp

m (k,−r); Dkp
mm(k) = 0, (A3)

us
m(k, r) must be related to ukp

m (k, r) through a gauge transfor-
mation, e.g.,

us
m(k, r) = ukp

m (k, r)eiβ(k). (A4)

As stated in the main text, after the “smooth procedure”, the
Berry connection

Ds
mm(k) = i

〈
us

m(k, r)
∣∣∇kus

m(k, r)
〉 = 0. (A5)

By inserting Eq. (A4) into Eq. (A5), we have

Ds
mm(k) = i

〈
ukp

m (k, r)eiβ(k)
∣∣∇k

(
us

m(k, r)eiβ(k)
)〉

= Dkp
mm(k) − ∇kβ(k). (A6)

It is easy to prove that Dkp
mm(k) is a real number and an even

function with respect to k,

Dkp
mm(−k) = Dkp

mm(k). (A7)

In order to ensure Ds
mm(k) = 0, β(k) = odd function + const.

Further, if the system has inversion symmetry, β(k) = const.
Thus, us

m(k, r) also has

us
m(−k, r) = ±ukp

m (k,−r). (A8)

Using Eq. (A8), we can get all the properties listed in Table I.
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