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Separability of H2O molecular potential surfaces in hyperspherical coordinates
via adiabatic approximation
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An adiabatic scheme for separation of the three-dimensional (3D) nuclear dynamics on the ground electronic
Born-Oppenheimer potential energy surface of an H2O molecule in hyperspherical coordinates is presented.
It is found that the three vibrational modes are weakly coupled and the 3D vibrational wave function can be
approximated as a product of three separable functions: one represented by the hyperradius and two by the
two hyperangles individually. This framework is then used for investigation of the formation and the role of a
saddlelike barrier arising in the two hyperspherical angles that is to moderate the OH + H dissociation process.
In order to test the validity of the framework, vibrational states with energies up to 19 500 cm−1 are constructed
under the assumptions of adiabaticity and separability and compared to full three-dimensional high-precision
numerical calculations yielding remarkable correspondence. As a result we present a simple construction scheme
for separated molecular vibration states as the first step towards theoretical investigation of laser-driven molecular
dynamics of triatomic molecules.
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I. INTRODUCTION

With the rapid development of laser technology, femtosec-
ond and even attosecond experimental techniques in the recent
years [1–3], the need for comprehensible theoretical models
of molecular vibrational states which take part in the dynam-
ics grows. Although various ab initio quantum calculation
packages allow fast calculation of normal modes and their fre-
quencies, determination of higher vibrational states and their
energies still requires knowledge of the potential energy sur-
face (PES) and solution of full-dimensional time-independent
Schrödinger equations. The difficulty owes much to the in-
creasing number of internal degrees of freedom of a molecule
which grows as 3N − 5 for linear molecules and 3N − 6 for
nonlinear molecules, where N is the number of atoms in
the molecule. Clearly a full-dimensional quantum mechanical
numerical solution is prohibitively complicated. The second
complication presents the separability of the vibrational states
into modes which is directly connected with a suitable choice
of a coordinate system. While quantum mechanical numerical
solutions can be, in principle, obtained in any coordinates,
the states may not exhibit any clear nodal structure required
for unambiguous identification of modes and assignment of
quantum numbers.

Separability of vibrational modes can significantly sim-
plify dynamical nuclear problems, e.g., due to symmetry
reasons. Standard and attractive approximation for complex
molecules is to freeze all the degrees of freedom except for
one interatomic pair or an angle between two such pairs.
This avoids the treatment of a multidimensional surface and
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the analysis of the dynamics can be dramatically simplified.
On the other hand, such simplification may occur in sev-
eral distinct regions of the multidimensional potential surface
only, such that connecting such regions in a time-dependent
way is needed. Before such an approach can be established,
however, it is critical that one can identify the circumstance
where dynamics in a multidimensional potential surface can
be simplified, preferably as separable components. For this
purpose, we aim at examining the ground-state potential sur-
face of water molecules (H2O), with the goal of identifying
the separability of the nuclear degrees of freedom.

Over the years, several models for the nuclear vibrations of
H2O have been formulated. The initial attempt assumed only
small displacements of atoms from their equilibrium position
so that the molecular potential expanded at the equilibrium
could be diagonalized alongside with the kinetic term, giving
rise to the well-known normal modes (see, e.g., Ref. [4]). The
normal modes, however, experience various mixings: Fermi
[5] at lower energies and Darling-Dennison [6] at high ener-
gies. Moreover, the anharmonicity of the potential had to be
taken into account by correcting terms [7]. Later it was shown
that the so-called local-mode model provides an overall better
fit to vibration energies (see, e.g., Ref. [8] and references
therein). Nevertheless, the local mode description fails for
the lower vibration states due to the relatively small mass of
the oxygen atom and yields a good agreement only from the
fourth polyad on [9]. Moreover, for water molecules not all
normal modes get washed out due to the Darling-Dennison
mixing and some survive alongside the local modes up to high
energies [10].

Hyperspherical modes offered an alternative to the two
presented types of modes, giving rise to various methods
for hyperspherical mode determination based on adiabatic
approximation (e.g., see Ref. [11] and references therein) or
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on assumption of mode separability in the self-consistent field
approach [12]. Selective dissociation through hyperspherical
modes was investigated in Refs. [13–16] and adiabatic separa-
bility of stretching and bending modes in Radau and valence
coordinates was addressed in Ref. [17].

A new era in the theoretical spectroscopy of H2O came
with precise ab initio calculations of molecular PESs [18–26]
which allowed one to calculate line lists for H2O with high
precision up to 41 000 cm−1 and J = 72 [27]. These listed
PESs either are constructed completely from ab initio cal-
culations or use them as a starting surface which then is
fine-morphed to fit available spectroscopic data. As we have
already mentioned, both normal-mode- and local-mode-based
methods offer unique insight into the internal dynamics of
molecules.

In this work, we investigate the separability of the PES of
the H2O molecule from Ref. [28] in hyperspherical coordi-
nates [29]. We use the adiabatic approximation to separate
the motion associated with the symmetrical stretch from the
motions in two hyperangles associated with bending and anti-
symmetric stretching modes. Further, we separate the motion
in the two hyperangular coordinates, resulting eventually in
three independent one-dimensional (1D) Schrödinger equa-
tions. As one of our results, we reconstructed the full 3D
states within our separability assumption and benchmark the
found energies against high-precision numerical results from
Ref. [30]. The goal of this work is to construct separated
vibration states with trivially given symmetry and quantum
numbers reasonably resembling the real vibration states and
energies with the lowest effort possible. We regard the de-
velopment of such a framework as an essential step towards
theoretical investigation of strong-field processes in triatomic
molecules. Especially, we hope that the hyperspherical coor-
dinates will help us in the future to shed light on the selective
dissociation limit for water isotopomers (e.g., HOD) as they
lose their molecular symmetry. In such a case, the bond be-
tween the diatomic remnants will play a crucial role and is
well described within one of the sets which we introduce later.

The paper is structured as follows. In Sec. II we intro-
duce the hyperspherical coordinates via three different sets
of Jacobi coordinates and show how the H2O molecule and
the PES behave in these coordinates. Further in that section,
we transform the Hamiltonian in hyperspherical coordinates.
We further introduce the grand angular momentum operator
and analyze the modes given in hyperspherical coordinates.
The adiabatic approximation and decomposition of the 3D
Hamiltonian in hyperspherical coordinates into two parts is
discussed in Sec. III. Moreover, all nonadiabatic correction
terms are derived and a way is shown how to solve the
adiabatic 2D Hamiltonian with B-spline basis functions. In
Sec. IV we discuss the main novelty of this work: possible
separability of the PES in the current hyperspherical coor-
dinates. In the course of this action the 2D vibration wave
functions are constructed in the separability approximation
and analyzed. Their role in the OH + H dissociation process
is also discussed. The full separability of the 3D PES in all
three hyperspherical coordinates is addressed in Sec. V where
the total energies are calculated in the adiabatic approxima-
tion neglecting nonadiabatic corrections and compared to full
3D numerical calculations. Finally, the results are discussed
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FIG. 1. Demonstration of the three ways for defining Jacobi vec-
tors with corresponding reduced masses μ1 and μ2.

and concluded in Sec. VI. A deeper analysis of the atomic
displacements associated with the hyperspherical modes is
provided in the Appendix. Atomic units are used throughout
the text unless stated otherwise.

II. FORMULATION IN HYPERSPHERICAL
COORDINATES

A. Mass-scaled hyperspherical coordinates

Internal degrees of freedom for the triatomic H2O molecule
can be described by Jacobi vectors in three different ways as
shown in Fig. 1. The first Jacobi vector ρ1 always points from
one atom to another, whereas the second vector ρ2 points from
the center-of-mass of the two atoms to the third one.

Further, it is common to introduce mass-weighted Jacobi
coordinates as

ξ1 =
√

μ1

μ
ρ1, ξ2 =

√
μ2

μ
ρ2, (1)

with an arbitrary parametric mass μ and the reduced masses

μ1 = mamb

ma + mb
,

μ2 = (ma + mb)mc

ma + mb + mc
, (2)

where indices a, b, and c depend on the set of Jacobi coordi-
nates. The masses in μ1 are the masses of the atoms connected
by ρ1, and the third remaining mass in μ2 is the mass of the
last atom.

The hyperspherical coordinates can be defined in several
ways but we follow the definition from [29] yielding

R =
√

ξ 2
1 + ξ 2

2 ,

φ = atan
ξ2

ξ1
,

θ = acos
ξ1 · ξ2

ξ1ξ2
. (3)

Although the values of φ and θ vary when transforming
between the sets, the value R is identical for all three sets.
Configurations of the molecule with respect to the angles φ

and θ are shown in Fig. 2. The figures are carried out for a
constant value of R but are valid for any value of the hyper-
radius. The hyperradius is connected only to the overall size
of the molecule and does not change the internal angles nor
the ratio between the two bond lengths used for determination
of the dissociation regions. In this work we set μ = μ2 from
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FIG. 2. Configuration of the molecule (HOH) at a constant hy-
perradius R with respect to hyperspherical coordinates φ and θ and
the choice of set. The second Jacobi vector is always oriented along
the θ axis. The position of the global minimum is marked with black
cross. The shaded regions indicate which atom is the furthest from
the others: in the blue region (labeled as b) it is the first hydrogen
(H + OH), in red region (labeled as r) it is the oxygen (H2 + O), and
in green region (labeled as g) it is the second hydrogen (HO + H).

the γ set, which sets the minimum of the potential to hy-
perradius R = 1.881 a.u. and to hyperangles φ = 45.52◦ and
θ = 72.32◦ for both the α set and the β set and to hyperangles
φ = 36.15◦ and θ = 90◦ for the γ set. The global minimum
is marked by a cross in each of the panels in Fig. 2.

The PES of the H2O molecule possesses only one global
minimum, which is also called equilibrium. Nevertheless, it is
of interest to have a look at the position of the minimum in

each slice of the PES with respect to the hyperradius as we
do in Fig. 3. The global minimum is marked by a black cross
and lies on the purple curve which marks the position of the
minimum of the 2D PES slice of constant R. Remarkably, the
position of the minimum manifests a split starting at R ≈ 2.4.
Since the α set does not exploit the molecular symmetry, the
split minima are located at distinct hyperangles φ and θ as the
figure shows. This is different for the γ set, which reflects
the molecular symmetry. In this set, both split minima are
located at the same value of hyperangle φ and their position
in hyperangle θ respects the axis of symmetry θ = 90◦. We
discuss later in the text how this bifurcation point is connected
to two dissociation channels OH + H.

B. Molecular Hamiltonian

The molecular Hamiltonian in Cartesian coordinates xi of
the ith nucleus yields

Ĥ =
3∑

i=1

− 1

2mi
∇2(xi ) + V, (4)

with the potential V accounting for the electronic energy and
the nuclear repulsion energy. For three atoms, in Jacobi co-
ordinates, the rovibrational Hamiltonian simplifies to [31,32]

Ĥ ′ = K̂vr + K̂v + V (ρ1, ρ2, θ ), (5)

where

K̂vr = 1

2

[
1

μ2ρ
2
2

(
	2

x + 	2
y

) +
(

cosec2θ

μ1ρ
2
1

+ cot2 θ

μ2ρ
2
2

)
	2

z + cot θ

μ2ρ
2
2

(	x	z + 	z	x )

]
− i

μ2ρ
2
2

( ∂

∂θ
+ cot θ

2

)
	y,

K̂v = − 1

2μ1ρ
2
1

∂

∂ρ1

(
ρ2

1
∂

∂ρ1

)
− 1

2μ2ρ
2
2

∂

∂ρ2

(
ρ2

2
∂

∂ρ2

)
− 1

2

(
1

μ1ρ
2
1

+ 1

μ2ρ
2
2

)
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (6)

The terms K̂vr and K̂v represent the rovibrational part and the
vibration part of the Hamiltonian, respectively. The quantities
	α are the total angular momentum operators which depend
on the Euler angles in such a way that the components of the
total angular momentum in ρi can be obtained from matrix
multiplication:

L = −C�. (7)

The volume element for the internal coordinates yields dV =
ρ2

1ρ2
2 sin θdρ1dρ2dθ and for the Euler angle part it depends

on the sine of the second Euler angle. For further details about
Jacobi coordinates in the embedded body frame, see Ref. [31].

From now on, we concentrate only on the vibrational ki-
netic term of the Hamiltonian K̂v which yields the following
in hyperspherical coordinates:

K̂v = − 1

2μ

∂2

∂R2
+ �2 − 1

4

2μR2
, (8)

with the squared grand angular momentum operator

�2 = − ∂2

∂φ2
− 1

sin2 φ cos2 φ sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (9)

Let us note that in the calculation the wave function was
rescaled by a factor of R5/2 sin φ cos φ and the volume element
now becomes dV = sin θdRdφdθ . Let us also remark that
transformation of the wave function from hyperspherical to
Cartesian coordinates can be performed simply by removing
the scaling factor.

C. Hyperspherical and normal modes

It is reasonable to exploit the trivial symmetry of the water
molecule and connect the two hydrogen atoms with the first
Jacobi vector, which we call the γ set for conventional rea-
sons. Reduced masses in such a case yield

μ1 = mH

2
, μ2 = 4μ1mO

4μ1 + mO
. (10)

The Jacobi vectors can be fixed in the embedded body frame
following Ref. [31] as

ρ1 = ρ1

(sin θ

0
cos θ

)
, ρ2 = ρ2

(0
0
1

)
, (11)
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FIG. 3. Position of the minima in slices of the potential, i.e.,
V (R = const., φ, θ ), in hyperspherical coordinates with respect to R
are projected and marked with magenta lines for the α and β sets in
panels (a) and (b) and for the γ set in panels (c) and (d). The position
of the global minimum is marked with a black cross. We can see that
the minimum of the potential splits at R ≈ 2.4 and two minima are
created (denoted with solid and dashed lines). In the α and β sets,
both minima are located at different hyperangles. In the γ set, the
two minima are located at the same hyperangle φ and in hyperangle
θ they respect the symmetry axis θ = 90◦. Let us also remark that the
two minima interchange under transformations between the α and β

sets.

meaning that the oxygen atom, the center-of-mass of the
molecule, and the center-of-mass of the two hydrogens lie on
the z axis.

One could ask: how do the changes in the hyperspherical
coordinates R, φ, and θ manifest? We carried the change of
the positions of the atoms connected with the hyperspherical
coordinates R, φ, and θ for the α and γ sets along with normal
coordinates (taken from Ref. [33]) in Fig. 4. We can identify
oscillations in Q1 and R as symmetric stretching, in Q2 and
φ (γ set) as bending, and in Q3 and φ (α-set) as asymmetric
stretching. The mode in hyperangle θ (γ set) reflects the sym-
metry of the asymmetric bond-stretching in Q3, but does not
seem to be a linear combination of the three normal modes as
the position of the oxygen atom does not change. Let us note
that the modes in Q2 and φ (γ set), although similar looking,
are not identical and, moreover, act in opposite directions,
since for increasing Q2 the molecule straightens, whereas
for increasing φ the molecule bends more. To conclude this
comparison we note that the modes in Q3 and φ (α set) are
not identical either.

In addition, we have analyzed the atomic displacements in
the γ set of hyperspherical coordinates analytically and the
results are given in the Appendix.
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FIG. 4. Visualization of hyperspherical modes in the α and γ

sets, and normal modes, as change in the positions of individual
atoms. The center-of-mass of the molecule is fixed at the origin and
normal coordinates Q1, Q2, and Q3 and hyperspherical coordinates
R, φ, and θ execute oscillation over one whole period. The positions
of the atoms during the first half-period are shown with light gray
and for the second half-period with dark gray. The displacements of
oxygen atom are exaggerated by a factor of 10. For more details see
the text.

III. ADIABATIC APPROXIMATION IN HYPERSPHERICAL
COORDINATES

A. The Born-Oppenheimer approximation

In order to simplify Eq. (5), we apply the well-known
Born-Huang expansion of the wave function ψ (R, φ, θ ) in the
form

ψ (R, φ, θ ) =
∑

ν

Fν (R)�ν (R, φ, θ ). (12)

When we insert the expansion into Eq. (5) with the vibrational
term from Eq. (8) and assume adiabatic behavior with respect
to the R coordinate, we arrive at two coupled equations:(

�2 − 1/4

2μR2
+ V (R, φ, θ )

)
�ν (R, φ, θ ) = Uν (R)�ν (R, φ, θ ),

(13)(
− 1

2μ

d2

dR2
+ Uν (R)

)
Fνn(R) = EνnFνn(R), (14)

where index ν represents the vibrational quantum number
of the 2D wave function �ν (R, φ, θ ) with energy Uν (R) on
a slice of the potential, i.e., V (R = const., φ, θ ). Later we
address the fact that the energies of two distinct vibrational
states can become degenerate and even cross with changing
R. Index n stands for the vibrational quantum number of the
1D wave function Fνn(R) on the 1D potential curve given by
Uν (R) with the fixed value ν. The energy Eνn then represents
the total vibrational energy of the molecule under the adiabatic
approximation applied on the nuclear coordinates. We can
treat R as a parameter in the first equation and as a coordinate
in the second equation. Let us stress that all nonadiabatic
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terms in the second equation are omitted so it is equivalent
to the Born-Oppenheimer approximation for the “slow” co-
ordinate R. It is known that such an approximation leads to
determination of the lower bound on the energy levels [34].
However the upper bound is usually closer to the real result
[35] and can be obtained by reintroduction of the nonadiabatic
term

Wνν (R) = − 1

2μ
〈�ν (R)| d2

dR2
|�ν (R)〉 (15)

into the round bracket on the left-hand side of Eq. (14) [34].
The bra–ket stands for integration over the hyperangles φ

and θ .
Let us also note that the energies Eνn generally do not

correspond to nuclear vibrational energies on the 3D adi-
abatic PES V (R, φ, θ ), unless the vibrational modes in R
and (φ, θ ) truly separate and all nonadiabatic corrections and
couplings vanish, e.g., due to a proper choice of coordinate
system. In such case, the energies Eνn would correspond to
the full 3D nuclear vibrational energies in the sense of the
Born-Oppenheimer approximation separating electronic and
nuclear motion.

B. Nonadiabatic coupling terms

Equations (13) and (14) are obtained by assuming that
the nonadiabatic terms are negligible, thus leading to the
conclusion that the various states Fνn(R) do not interact. If
the nonadiabatic couplings are included, the full equation,
Eq. (14), would take the following form:(

− 1

2μ

d2

dR2
+ Uν (R) + Wνν (R) − Eν

)
Fν (R)

= −
∑
ρ �=ν

(
Wνρ (R) + 2Vνρ (R)

d

dR

)
Fρ (R), (16)

where

Vνρ (R) = − 1

2μ
〈�ν (R)| d

dR
|�ρ (R)〉, (17)

Wνρ (R) = − 1

2μ
〈�ν (R)| d2

dR2
|�ρ (R)〉. (18)

The Hamiltonian can be decomposed into two terms:

H (1D) = H (1D)
diag. + H (1D)

coupl.. (19)

The diagonal Hamiltonian has the following form:

H (1D)
diag. νν

= − 1

2μ

d2

dR2
+ Uν + Wνν (R), (20)

and the nonadiabatic couplings can be written as

H (1D)
coupl. =

⎛
⎜⎝

0 W12(R) + 2V12(R) d
dR · · ·

W21(R) + 2V21(R) d
dR 0 . . .

...
. . .

. . .

⎞
⎟⎠.

(21)

C. Solving the 2D angular Schrödinger equation
with 2D B-splines

Equation (13) can be solved trivially over some real 2D
basis set. For this purpose we decided to use 2D B-splines of
some order k, chosen to be the same in both dimensions. Then,
the wave function can be decomposed as

�ν (R, φ, θ ) =
∑

n

cνn(R)Bn(φ, θ ), (22)

where Bn(φ, θ ) is the nth 2D B-spline and the coefficients
cνn(R) are R-dependent constants. The index n represents a
unique product of two 1D B-splines of order k constructed on
grid of Nφ points in one dimension and Nθ points in the other
(see, e.g., Ref. [36]). We have chosen k = 6 and Nφ = 46 and
Nθ = 91.

In the B-spline representation, Eq. (13) yields∑
n

H (2D)
n′n (R)cνn(R) =

∑
n

In′ncνn(R), (23)

with the Hamiltonian and overlap matrices as follows:

H (2D)
n′n = 〈Bn′ (φ, θ )|Ĥ2D|Bn(φ, θ )〉,
In′n = 〈Bn′ (φ, θ )|Bn(φ, θ )〉. (24)

When we substitute for the grand angular momentum op-
erator from Eq. (9) into Eq. (13), we can evaluate the matrix
elements of the angular Hamiltonian as

H (2D)
n′n =

∫∫
dφdθ sin θBn′

(
V − 1

8μR2

)
Bn

+ 1

2μR2

∫∫
dφdθ sin θ

(
∂Bn′

∂φ

∂Bn

∂φ

+ 1

sin2 φ cos2 φ

∂Bn′

∂θ

∂Bn

∂θ

)
, (25)

where we applied the boundary conditions ψ (R, 0, θ ) =
ψ (R, π/2, θ ) = 0 and ∂ψ/∂θ = 0 at θ = 0 and π . The over-
lap matrix can be evaluated simply as

In′n =
∫∫

dφdθ sin θBn′Bn. (26)

The diagonalization of this symmetric generalized eigen-
value problem can be done by standard packages (e.g.,
LAPACK for FORTRAN). The energies Uν carried out for R =
1.88 a.u. are presented in Table I. In this table, quantum
numbers νφ and νθ are assigned from the nodal structure. Take
U1 and U3 as the elementary quanta, it can be seen that the 2D
eigenvalues are well approximated by Eνφ,νθ

= νφU1 + νθU3.

IV. SEMISEPARABILITY OF THE POTENTIAL IN
HYPERSPHERICAL COORDINATES

Normal vibration modes of the water molecule are based
on the strict assumption that the potential is separable in the
normal coordinates, for example, at least at the equilibrium
position, and that vibrational states are independent and quan-
tized with unique quantum numbers and unique energies. As
we discuss further, this is not true for highly excited states.
Nevertheless, such a simple picture is not far from reality
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TABLE I. Analysis of the separation of the potential at R = 1.88.
We compare the quantized energies constructed via Eνφ ,νθ

= νφU1 +
νθU3 with the calculated energies Uν of 2D Eq. (13). The overall
small relative difference indicates that the potential behaves like
being separable in the two hyperangles.

Eνφ ,νθ
Uν Rel. diff.

ν νφ νθ (cm−1) (cm−1) (%)

0 0 0 0 0 —
1 1 0 1634.3 1634.3 —
2 2 0 3268.7 3238.2 0.9
3 0 1 4111.9 4111.9 —
4 3 0 4903.0 4803.7 2.1
5 1 1 5746.3 5770.1 0.4
6 4 0 6537.4 6320.3 3.4
7 2 1 7380.6 7397.6 0.2
8 5 0 8171.7 7770.9 5.2
9 0 2 8223.8 8368.9 1.7
10 3 1 9014.9 8986.8 0.3
11 6 0 9806.1 9122.8 7.5
12 1 2 9858.2 10050.8 1.9
13 7 0 11440.4 10343.4 9.6
14 4 1 10649.3 10527.6 1.1
15 8 0 13074.8 11537.5 13.3
16 2 2 11492.5 11701.7 1.8
17 5 1 12283.6 12003.9 2.3
18 0 3 12335.7 12763.8 3.4
19 9 0 14709.1 12874.7 14.2
20 3 2 13126.9 13314.4 1.4

and this picture helps us to gain insight into the behavior of
molecular dynamics.

We have already separated the potential into hyperradial
and hyperangular parts in our adiabatic approach: can the
equivalent of the three normal modes occur also in the hy-
perspherical approach?

The answer is not obvious since the grand angular mo-
mentum operator �2 from Eq. (9) is not separable in the
hyperangles. Nevertheless, we can use a small trick if we as-
sume separability of the 2D wave function with the parameter
R and the quantum numbers νφ and νθ in the form

�̃νφ,νθ
(R, φ, θ ) = �νφ

(R, φ)�νθ
(R, θ ). (27)

Such a separable form would yield the approximate total 2D
energy as

Ũνφ,νθ
= Uνφ

+ Uνθ
. (28)

This trick comes in handy when separation of the grand an-
gular momentum operator along with the molecular potential
V (R, φ, θ ) at the minimum of the potential (φmin, θmin) for a
given R is set by(

�2
φ − 1/8

2μR2
+ V (R, φ, θmin) − 1

2
V (R, φmin, θmin)

)
�νφ

(R, φ)

= Uνφ
�νφ

(R, φ),(
�2

θ − 1/8

2μR2
+ V (R, φmin, θ ) − 1

2
V (R, φmin, θmin)

)
�νθ

(R, θ )

= Uνθ
�νθ

(R, θ ), (29)
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FIG. 5. Adiabatic PECs U (2D)
ν obtained by solving Eq. (13) with

the 2D B-spline basis set are shown in panel (a) and PECs Ũνφ ,νθ

obtained by separable approximation are plotted in panel (b).

where the separated grand angular operators yield

�2
φ = − ∂2

∂φ2
,

�2
θ = − 1

sin2 φmin cos2 φmin sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (30)

Let us note that the quantities obtained within separability
approximation are marked with a tilde.

Although this separation may seem arbitrary, it is well
founded by the quantization of the 2D wave functions
�ν (R, φ, θ ) in the quantum numbers νφ and νθ as we can see
in Table I.

This also explains why the resulting potential energy
curves (PEC) Ũνφ,νθ

are very close to the curves obtained by
full 2D calculations (calculated with a B-spline basis set) [see
Figs. 5(a) and 5(b)]. Not only is the order of the curves in
U (2D)

ν and Ũνφ,νθ
identical, but also the positions of all curve

crossings. The exact numerical values at R = 1.88 for these
two calculations can be found in Table II.

A. Reconstructing �̃(φ, θ)

The huge advantage of having two 1D Schrödinger equa-
tions instead of one 2D equation is the speed of calculation.
The other great advantage is the trivial organization of the
eigenstates. The 1D eigenstates in each dimension are quan-
tized with the corresponding quantum number νφ or νθ .
Energies of these 1D states increase monotonically with the
increasing quantum number, and similar states in various R
slices of the PES can be easily assigned. Such organization
also applies for the constructed 2D wave functions �̃νφ,νθ

.
This is not true for the adiabatic 2D states as there are slices
where quasiseparability breaks down and nodes in the two
dimensions cannot be distinguished. Trying to connect the
2D adiabatic states in neighboring slices via their overlap,
〈�ν (Ri )|�ν ′ (Ri+1)〉, works for the four lowest-lying states
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TABLE II. Comparison of energies at R = 1.88 a.u. for low-
lying states obtained by several methods as discussed in the text.
Energies Ũνφ ,νθ

are determined under the assumption of separable
potential while U (2D)

ν are true adiabatic potentials. The diagonal full
Hamiltonian matrix element H̃ (full)

(ν )(ν ) gives the energy of the 2D Hamil-

tonian if the eigenstates are separable. Ẽ (full)
(ν ) gives the energy after

diagonalization of 2D Hamiltonian with the basis constructed by the
separable states. Thus the separable states can serve as a diabatic
basis set.

ν νφ νθ Ũνφ ,νθ
H̃ (full)

(ν )(ν ) Ẽ (full)
(ν ) U (2D)

ν

0 0 0 0.01280 0.01287 0.01283 0.01283
1 1 0 0.02020 0.02047 0.02027 0.02027
2 2 0 0.02746 0.02808 0.02758 0.02758
3 0 1 0.03152 0.03174 0.03156 0.03156
4 3 0 0.03455 0.03578 0.03472 0.03472
5 1 1 0.03892 0.03977 0.03912 0.03912
6 4 0 0.04142 0.04384 0.04163 0.04163
7 2 1 0.04618 0.04813 0.04653 0.04653
8 5 0 0.04801 0.05322 0.04830 0.04823
9 0 2 0.05093 0.05130 0.05096 0.05096

only, while for higher-lying states they cannot be connected
correctly via this method through a split of the potential at
R ≈ 2.43. Further challenge is posed at R ≈ 3.19 a.u. where
the full 2D eigenfunctions also lack clear nodal structure in
each dimension, making the connection rather nontrivial.

The natural thing to ask is: how precise are the 2D wave
functions constructed by two 1D wave functions obtained
from the separation method in Eq. (29)? To answer this ques-
tion we can use two ways. On one hand, we can evaluate the
overlap between the constructed states and the real 2D states:

ai,(ν) = 〈�i|�̃(ν)〉, (31)

where hyperindex (ν) represents one particular combination
of the quantum numbers νφ and νθ . The assignment of νφ

and νθ to the hyperindex ν follows the scheme from Table II
(for example, if ν = 6 then νφ = 4 and νθ = 0). We show the
projections in Table III. On the other hand, we can evaluate
the full Hamiltonian matrix

H̃ (full)
(ν1 )(ν2 ) = 〈�̃(ν1 )|�

2 − 1/4

2μR2
+ V |�̃(ν2 )〉, (32)

with hyperindices (ν1) and (ν2). The more the diagonal el-
ements of the matrix H̃ (full)

(ν)(ν) deviate from the corresponding
energy Ũνφ,νθ

, the more the constructed wave functions deviate
from the true adiabatic 2D wave functions. Such deviations
start to become prominent for the 7th (ν = 6) and 9th (ν = 8)
energy levels. The discrepancy can be attributed to the high
quantum number νφ (4 and 5, respectively) which is connected
to a wider spread of the wave function in the φ direction,
where the full shape of the potential starts to play a role.
As we can see in Fig. 6 where we show the 2D slice of
V (R = 1.88, φ, θ ) and compare the constructed �̃(6) with the
true 2D �6. The wave function 2D �6 differs from �̃(6)

mainly in the first lobe which is somewhat broader and lower,
which can be attributed trivially to “opening” of the potential
at small values of φ. Nevertheless, this difference, although
having rather small influence on the energy of the state (see
Table III), does cause a non-negligible mixing with other
states, as evidenced by the significant deviation of H̃ (full)

(6)(6) from
Ũ4,0. We also diagonalized the full Hamiltonian matrix evalu-
ated over a basis of 400 states �̃νφ,νθ

, with νφ, νθ = 1, . . . , 20,

and carried out the ten lowest eigenenergies Ẽ (full)
(ν) in Table II.

The correspondence between the eigenenergies and the real
adiabatic 2D values indicates that the constructed states can
be used as diabatic basis set.

Once the 2D basis functions �̃νφ,νθ
are constructed for the

range of R of interest, we can trivially carry out the corre-
sponding 1D Ũνφ,νθ

(R). In particular, as shown in Fig. 7, the
potential curves can be labeled as symmetric or antisymmetric
in accordance with the even or odd quantum numbers νθ and
with respect to the symmetry in the hyperangle θ .

B. Split of potential in θ and appearance of saddle

The OH + H dissociation limit along with the symmetry
of the molecule leads to formation of a barrier at a particular
size (or R) of the molecule when it begins to be energetically
favorable for one of the hydrogen atoms to shift farther away
from oxygen than the other. This twofold dissociation limit
manifests trivially only in the γ set as the split of the potential
minimum appears only in the hyperangle θ . The barrier arises
at the hyperradius R ≈ 2.4 as shown in Fig. 3.

The PES in the γ set manifests symmetry in the hyper-
spherical angle θ which is also preserved by the 1D wave

TABLE III. Projections ai,(ν ) at R = 1.88 a.u. Here the row number indicates the level order of the adiabatic state, and the column number
is the order ν of the separable state (corresponding to the first column in Table II). The off-diagonal terms indicate the degree of coupling.

i = \ (ν ) = (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

0 0.999 0.025 0 0 0.001 0 0 0 0 0.007
1 0.026 0.997 0.032 0 0.002 0 0.003 0 0.001 0.034
2 0.001 0.038 0.993 0 0.035 0 0.005 0 0.006 0.012
3 0 0 0 0.996 0 0.075 0 0.003 0 0
4 0 0.002 0.049 0 0.987 0 0.033 0 0.012 0.004
5 0 0 0 0.079 0 0.985 0 0.098 0 0
6 0 0 0.004 0 0.060 0 0.976 0 0.025 0.001
7 0 0 0 0 0 0.115 0 0.970 0 0
8 0 0 0.001 0 0.007 0 0.073 0 0.959 0
9 0.010 0.037 0.020 0 0 0 0 0 0 0.989
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FIG. 6. Top panel: A slice of potential V (R = 1.88, φ, θ ). Com-
parison of the 2D adiabatic wave function (bottom panel) for the 7th
state (ν = 6) in Table II with the separable wave function (middle
panel) for �̃4,0+ . The superscript + indicates the symmetry in the
hyperspherical coordinate θ .

functions �νθ
and the 1D potential V (θ ) = V (R, φmin, θ ) −

V (R, φmin, θmin). Therefore we can restrict our initial analysis
to one dimension only. The formation of the barrier in the
hyperangle θ is visualized in Fig. 8.

With increasing R the value of the minimum of the po-
tential increases and a barrier at θ = 90◦ starts to form.
Moreover, the height of the barrier grows with the increasing
hyperradius. As the height of the barrier increases, the energy
difference between the neighboring states of opposite symme-
try decreases till the states become degenerate at some point.
The energies of lower-lying states converge to each other
faster than the energies of higher-lying states, which is triv-
ially understandable as the creation of two separate potential
wells affects the lowest states mostly. We should note that only
the states with opposite symmetry merge together. The rising
of the potential barrier will affect the antisymmetric states
less since they have a node at θ = 90◦. For the symmetric
states, as the potential barrier rises, the wave functions at and
near θ = 90◦ are in the classical forbidden region, thus with
nonzero but very small probabilities. Therefore, the energy of
the symmetric states will become very close to antisymmetric
states since in both cases the wave functions in the barrier
regions are both very small, resulting in the pair of symmetric
and antisymmetric curves merging at large R where the poten-
tial barrier is high.

Now, we can understand why the two neighboring PECs
of opposite symmetry merge together while staying separated
from other PEC pairs of the same νφ in Fig. 7 and what role is
played by the barrier. In the top row of Fig. 9 we demonstrate
how the barrier emerges in 2D. At equilibrium R = 1.88, as
seen in the first potential surface in the top row, there is only
one minimum in θ . Near R = 2.5, this minimum begins to
split, where a saddle starts to form, and the two minima shift
apart with increasing R, as shown for R = 3 [see Figs. 3(c)–
3(d) for more details on the position of the minima]. In the
remaining rows of Fig. 9, we show how the 2D �̃νφ,νθ

(φ, θ )
wave functions evolve with R for three pairs of states where
each pair becomes degenerate at large R. Before the saddle,
the symmetric state lies much lower that the antisymmetric
state, where the symmetric state has much larger probability
distributions near the symmetry point θ = 90◦. At the saddle,
each wave function begins to spread and eventually the wave
function splits into two distinct parts at R = 3. In doing so, the
nodal structure at θ = 90◦ remains the same. Since the barrier
height increases with R, the large probability density for the
symmetric state at θ = 90◦ begins to diminish. For large R, the
probability densities for symmetric and antisymmetric states
in the barrier region both become very small, leading to two
degenerate states at large R in each pair. Such “bifurcation” at
the saddle occurs at increasing R as the vibrational energies of
the states increase. For such degenerate states, the linear com-
bination of the symmetric and antisymmetric states results in
two localized states:

�̃H+OH = �̃0,0+ + �̃0,1−√
2

,

�̃HO+H = �̃0,0+ − �̃0,1−√
2

. (33)

These two localized states are related to either case of
the attachment of one hydrogen atom to one oxygen atom
with the other hydrogen atom far away. Figure 10 illustrates
such cases at R = 4 a.u. In the top panels, we illustrate the
2D potential surface, highlighting where the potential wells
are located in each set of Jacobi coordinates and the exact
positions of the minima are marked by white crosses. For
each localized state, the wave function is confined only to
one narrow region, as clearly seen in each Jacobi set of
hyperspherical angles illustrated in the middle and bottom
panels.

Each linear combination represents the dissociation limit
for different hydrogen atoms as indicated by the subscript.
Such localization of the hyperspherical modes towards disso-
ciation of one or the other hydrogen atom is possible only due
to the energy degeneracy for symmetric and antisymmetric
neighboring states. We should keep in mind that the degener-
acy of the two neighboring states appears at a particular value
of R which depends on their energy via quantum numbers νφ

and νθ as discussed in Fig. 7.
Let us remark that the creation of energy-degenerate pairs

at large hyperadii was also observed for the true 2D wave
functions and is well reproduced in the present approach.

So far, we have developed a framework adiabatically
connecting equilibrium vibrational states with dissociative
vibrational states at large hyperradii. Intuitively, the most
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FIG. 7. Depiction of several lowest energies Ũνφ=0,1,2;νθ
of the 2D states �̃νφ ,νθ

constructed via the separation method. The PECs of the
same νφ are separable without any crossings. The states symmetric in θ are shown by solid lines and marked with a superscript +, and the
antisymmetric states are shown by dashed lines and a superscript −. The potential energy curves for states with opposite symmetry and
νθ = 2n − 2 and νθ = 2n − 1 are shown with the same color. Each pair merges into a single curve at large R. As expected, the merging occurs
at larger values of R with increasing quantum number νθ .

efficient control of dissociative products by ultrafast pulses
is to manipulate these states in the transition region. Such
knowledge would be invaluable for optimization of reaction
products in the future.

V. CONSTRUCTION OF THE FULL VIBRATIONAL STATES

The full vibrational states can now be constructed via
Eq. (14) using the PEC from Eq. (28). The correct procedure
should involve also the nonadiabatic corrections as shown
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FIG. 8. Formation of the barrier in the molecular potential visualized as a 1D slice. The potential V (θ ) = V (R, φmin, θ ) − 1
2V (R, φmin, θmin )

is shown as a thick blue line while low-lying states �νθ
are shown as thin colored lines. With increasing hyperradius R, a single potential well at

small R will deform into two potential wells, separated by a growing potential barrier. As the barrier grows, the wave function of the symmetric
state in the barrier region becomes very small; thus its energy becomes very close to the antisymmetric state, resulting in pairs of degenerate
states at a large hyperradius. Note that the nodal structures of the wave functions do not change versus R.
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FIG. 9. We plotted three most distinct shapes of the PES slices with respect to the value of R on the first line. As we can see the 2D PES
slices evolve from having one minimum (R � 2.4 a.u.) towards having two distinct minima (R � 2.4 a.u.) separated by a saddlelike barrier
with the height increasing with R. On the remaining lines we carried out the corresponding 2D functions �̃νφ ,νθ

which we organized with
respect to their symmetries in θ and energy degeneracy at large R. The deformation of the symmetric states due to the barrier is more severe
than that of the antisymmetric states, leading to the creation of degenerate energy pairs as we already discussed for the 1D slices in the text.

in Eq. (16), but since our PEC was already evaluated in the
separable approximation of the potential, it makes little sense
to incorporate the relatively small nonadiabatic terms to in-
crease the precision. Nevertheless, it is worth noting that the
nonadiabatic correction terms peak at the split of the potential
at R ≈ 2.4 a.u., which is the place where the symmetric and
antisymmetric states start to degenerate in energy.

For illustration we carried out the four lowest 1D solu-
tions FνR (R) on the lowest PEC Ũνφ=0,νθ =0+ (R) in Fig. 11.
One could ask how precise are the energies EνR,νφ,νθ

after
all these approximations are made. Interestingly, the com-
puted energies are very precise for energies up to roughly
19 500 cm−1. In this comparison, the data were obtained with
optimized discrete variable representation calculated with dif-
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FIG. 11. The four lowest 1D solutions Fn(R) to Eq. (14) with
Ũ0,0+ (R).

ferently defined hyperspherical coordinates but on the same
PES in Ref. [30]. The zero-point energy we determined is
4635.14 cm−1, as compared to the value of 4629.98 cm−1

given by Neto and Costa in Ref. [30], a difference of only
5.2 cm−1.

Nevertheless, it is expected that the zero-point energy
will be reproduced correctly as the ground state lies in the
separability region and the nonadiabatic corrections are the
smallest. As we have already mentioned, the approximation
of separability introduces discrepancies for highly excited 2D
states (e.g., �4,0+ ) and therefore errors are expected to rise
with increasing quantum state. To get a better picture of the
errors introduced with the approximations we show a list
of low-lying vibrational states labeled by the three quantum
numbers which are readily available based on the separable
approximate wave functions. The vibrational energy levels
obtained from the present calculations are then compared to
those given by Neto and Costa [30] in Table IV. The relative
error of the calculated energies at most are about 2–3%, but
mostly are under 1%.

As the largest source of discrepancy between the result
presented here and in Ref. [30], we regard the breakdown
of the potential semiseparability from Eqs. (29) in the two
hyperangles for higher excitation states. We also found that
inclusion of the diagonal nonadiabatic terms Wνν (R) does not
generally improve the results in Table IV.

VI. DISCUSSION

In this article we have addressed the separability of nu-
clear vibrational states in a water molecule in its electronic
ground state in hyperspherical coordinates as an alternative to
the well-known and somewhat complementary normal-mode
and local-mode approaches. As the starting point, we applied
adiabatic approximation in the hyperradius, separating it from
the two hyperangles. Further simplification of the problem
was motivated by the observed semiseparability in the 2D
energy spectra and verified in the separation of the 2D prob-
lem into two independent 1D problems for each hyperangle.
The presented framework was then used for the construc-
tion of adiabatic 1D PECs as functions of the hyperradius.
Classification and separability of all adiabatic 1D PECs with
respect to the underlying quantum numbers associated with
the hyperangles was discussed. Pairwise degeneracy of two
neighboring PECs of opposite symmetry at large values of
hyperradius was observed and connected to formation of a
saddlelike barrier associated with the twofold OH + H dis-
sociation limit. The role of the barrier on the 2D vibrational
states was thoroughly investigated and shape deformation
followed by separation of symmetric states with increasing
hyperradius was observed while the shape of antisymmetric
states after separation remained unchanged. This not only ex-
plains the pairwise degeneracy of 1D PECs but also provides
a possibility to control the dissociation process because which
of the two hydrogen atoms will dissociate from the molecule
will be determined by the linear combination of the paired 2D
wave functions. A possible control scheme emerges as these
states are adiabatically linked to specific vibrational states
near equilibrium geometry.
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TABLE IV. Comparing the determined energies with the highly
precise values from Ref. [30].

E (Neto) E (pres.) Rel. diff.
νR νφ νθ (cm−1) (cm−1) (%)

0 0 0 0 5.2 0.1
0 1 0 1594.2 1588.6 0.4
0 2 0 3151.7 3139.0 0.4
1 0 0 3656.1 3654.9 0.0
0 0 1 3755.6 3773.6 0.5
0 3 0 4667.3 4650.7 0.4
1 1 0 5233.8 5207.7 0.5
0 1 1 5331.6 5318.5 0.2
0 4 0 6133.7 6115.7 0.3
1 2 0 6774.5 6727.6 0.7
0 2 1 6872.9 6832.6 0.6
2 0 0 7202.1 7221.1 0.3
1 0 1 7250.3 7267.8 0.2
0 0 2 7444.4 7467.5 0.3
0 5 0 7539.4 7523.7 0.2
1 3 0 8272.6 8208.8 0.8
0 3 1 8375.0 8310.7 0.8
2 1 0 8762.2 8743.6 0.2
1 1 1 8808.9 8780.1 0.3
0 6 0 8862.8 8863.8 0.0
0 1 2 9001.4 8973.1 0.3
1 4 0 9719.1 9643.6 0.8
0 4 1 9832.0 9746.0 0.9
0 7 0 10073.4 10142.5 0.7
2 2 0 10284.9 10233.5 0.5
1 2 1 10331.6 10261.8 0.7
0 2 2 10524.8 10449.8 0.7
3 0 0 10601.9 10701.4 0.9
2 0 1 10614.8 10673.0 0.5
1 0 2 10868.5 10812.9 0.5
0 0 3 11033.3 11085.5 0.5
1 5 0 11081.7 11021.8 0.5
0 8 0 11234.4 11404.5 1.5
0 5 1 11234.6 11129.3 0.9
2 3 0 11765.3 11684.9 0.7
1 3 1 11814.6 11707.5 0.9
0 3 2 12010.7 11893.1 1.0
3 1 0 12143.5 12194.2 0.4
2 1 1 12155.6 12152.9 0.0
1 6 0 12341.5 12337.8 0.0
1 1 2 12407.5 12284.5 1.0
0 9 0 12504.5 12708.7 1.6
0 6 1 12566.5 12449.9 0.9
0 1 3 12570.5 12551.0 0.2
2 4 0 13194.9 13090.1 0.8
1 4 1 13251.7 13110.3 1.1
0 4 2 13452.8 13296.9 1.2
1 7 0 13605.4 13610.5 0.0
3 2 0 13646.8 13654.5 0.1
2 2 1 13657.7 13602.3 0.4
0 10 0 13796.7 14084.6 2.0
0 7 1 13798.7 13707.4 0.7
2 0 2 13828.7 14067.0 1.7
3 0 1 13831.0 13983.9 1.1
1 2 2 13910.7 13727.5 1.3
0 2 3 14075.0 13989.4 0.6
4 0 0 14222.4 14092.4 0.9

TABLE IV. (Continued.)

E (Neto) E (pres.) Rel. diff.
νR νφ νθ (cm−1) (cm−1) (%)

1 0 3 14320.5 14288.6 0.2
0 0 4 14540.4 14627.0 0.6
2 5 0 14548.3 14439.7 0.8
1 5 1 14629.4 14461.2 1.2
1 8 0 14778.4 14877.9 0.7
0 5 2 14858.3 14653.3 1.4
0 8 1 14932.6 14933.0 0.0
3 3 0 15108.6 15076.8 0.2
2 3 1 15121.5 15016.0 0.7
0 11 0 15190.2 15530.1 2.2
2 1 2 15349.1 15505.1 1.0
3 1 1 15354.2 15431.9 0.5
1 3 2 15376.0 15137.0 1.6
0 3 3 15544.2 15396.6 1.0
4 1 0 15742.9 15556.6 1.2
2 6 0 15809.5 15732.3 0.5
1 1 3 15838.0 15719.2 0.8
1 6 1 15922.4 15753.0 1.1
1 9 0 16024.7 16171.2 0.9
0 1 4 16056.5 16051.6 0.0
0 9 1 16109.4 16182.3 0.5
0 6 2 16186.4 15952.3 1.5
3 4 0 16524.3 16453.4 0.4
2 4 1 16540.1 16387.0 0.9
0 12 0 16670.8 17031.4 2.1
1 4 2 16783.2 16506.9 1.7
3 2 1 16822.8 16849.8 0.2
2 2 2 16825.1 16914.8 0.5
3 0 2 16898.8 17225.7 1.9
2 0 3 16898.6 17398.6 2.9
0 4 3 16973.6 16767.3 1.2
2 7 0 17055.7 16992.3 0.4
1 7 1 17157.0 16996.9 0.9
4 2 0 17224.9 16988.9 1.4
1 10 0 17316.5 17515.0 1.1
1 2 3 17319.1 17123.0 1.1
0 10 1 17378.6 17493.1 0.7
0 7 2 17434.5 17189.0 1.4
5 0 0 17460.0 17386.9 0.4
4 0 1 17495.9 17192.9 1.8
0 2 4 17541.3 17450.9 0.5
1 0 4 17753.6 17693.6 0.3
3 5 0 17876.8 17775.4 0.6
2 5 1 17902.1 17706.6 1.1
1 5 2 18120.0 17829.3 1.6
0 13 0 18194.7 18574.6 2.0
2 8 0 18260.0 18251.8 0.0
2 3 2 18273.1 18291.3 0.1
1 11 0 18695.7 18920.5 1.2
5 1 0 18957.7 18826.0 0.7
0 3 4 18994.9 18820.9 0.9
3 6 0 19147.8 19044.6 0.5
1 1 4 19249.7 19083.1 0.9
1 6 2 19377.1 19096.0 1.5
2 9 0 19493.2 19530.8 0.2
2 4 2 19664.8 19628.5 0.2
0 9 2 19697.5 19581.5 0.6
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Finally, we have tested the validity of our framework by
constructing the full 3D vibrational states within the adiabatic
and separability approximation. The resulting energies yield
an amazing correspondence to the high precision 3D calcula-
tions and differ maximally by 2.9% for the values up to 19
500 cm−1.

Among the undeniable advantages of the presented frame-
work we count the simplicity of vibrational state construction
reducing the generally nontrivial 3D problem into three triv-
ial 1D problems while yielding reasonably precise energies
with only small deviations from the exact values. Let us note
that the assignment and interpretation of vibrational quan-
tum numbers in a full numerical 3D calculation can be very
challenging especially when an unsuitable coordinate system
is used. Nevertheless, the construction procedure presented
here gives rise naturally to the vibrational quantum numbers
which are easily understandable in the context of the separated
hyperspherical modes.

It is also fair to mention that the present approach is not
aimed at high-precision calculation of vibrational energy lev-
els. Whether the approximate separability demonstrated here
for water molecules can be extended to other molecular sys-
tems remains to be studied further. It is interesting to note that
at least the separable vibrational wave functions constructed in
this paper would serve as convenient diabatic basis functions
for scattering calculations, thus replacing the complicated
nonadiabatic couplings at multidimensional conical intersec-
tions with residual interactions from the potential surfaces that
were neglected in the separable one-dimensional potentials.

To conclude, it is fair to say that there still remains a
lot to be done. How the simplified framework of treating
multidimensional nuclear dynamics can indeed be utilized to
predict realistic laser-induced molecular dynamics as well as
to provide simple interpretation of the underlying mechanism
has yet to be demonstrated. Without taking such a step, on
the other hand, it is difficult to expect that one can indeed
understand the dynamics for a complex molecule.
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APPENDIX: ATOMIC DISPLACEMENTS IN THE γ SET

The positions of the hydrogen atoms R1 and R2 and the
center of mass of the molecule RCM are shown in Fig. 12 and
the vectors can be linked to the Jacobi vectors as follows:

R1 = −ρ2 − μ1

mH
ρ1 = −ρ2 − ρ1

2
,

R2 = −ρ2 + μ1

mH
ρ1 = −ρ2 + ρ1

2
,

RCM = mO
2mH+mO

ρ2 = μ2

4μ1
ρ2. (A1)

R1 R2RCM

θ

ρ1

ρ2

m1

m2

m3

FIG. 12. Definition of Jacobi vectors ρ1 and ρ2 and their mutual
angle θ in the γ set and the molecular bond vectors R1 and R2. The
center-of-mass of the whole molecule is located at RCM.

The size of the Jacobi vectors is related to the hyperspher-
ical coordinates R and φ via

ρ1 =
√

μ

μ1

R√
1 + tan2 φ

, ρ2 =
√

μ

μ2

R tan φ√
1 + tan2 φ

. (A2)

The variables ρ1 and ρ2 are interconnected with respect to
derivation:

dρ1

dR
= ρ1

R
,

dρ1

dφ
= −

√
μ2

μ1
ρ2,

dρ2

dR
= ρ2

R
,

dρ2

dφ
= +

√
μ1

μ2
ρ1. (A3)

It is possible to show that

R1,2 · ∂RR1,2

|R1,2||∂RR1,2| = 1,

R̃1,2 · ∂RR̃1,2

|R̃1,2||∂RR̃1,2|
= 1, (A4)

where R̃1,2 = R1,2 − RCM. Neither of the remaining displace-
ment vectors ∂φR1,2, ∂φR̃1,2, ∂θR1,2, and ∂θ R̃1,2 is generally
parallel or perpendicular to the vector R1,2 or R̃1,2 and their
mutual angles are given by rather complicated and not very
enlightening relations, depending only on angles φ and θ and
on masses μ1, μ2, and μ. The displacement vectors with
respect to individual coordinates can be at equilibrium, i.e.,

TABLE V. Character table for the normal modes (ν1, ν2, ν3) and
the hyperspherical modes (νR, νφ , νθ ) of a water molecule.

C2ν E C2 σ (xy) σ (yz)

ν1 1 1 1 1
ν2 1 1 1 1
ν3 1 −1 −1 1
νR 1 1 1 1
νφ 1 1 1 1
νθ 1 −1 −1 1
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θ = 90◦, expressed for the change in the hyperradius R as

∂RR1 = 1

2R

( − ρ1, 0, −2ρ2
)
,

∂RR2 = 1

2R

( + ρ1, 0, −2ρ2
)
,

∂RRCM = μ2ρ2

4μ1R
(0, 0, 1), (A5)

in the hyperangle φ as

∂φR1 =
(

+
√

μ2

μ1

ρ2

2
, 0, −

√
μ1

μ2
ρ1

)
,

∂φR2 =
(

−
√

μ2

μ1

ρ2

2
, 0, −

√
μ1

μ2
ρ1

)
,

∂φRCM =
√

μ2

μ1

ρ1

4
(0, 0, 1), (A6)

and in hyperangle θ as

∂θR1 = ρ1

2
(0, 0, +1),

∂θR2 = ρ1

2
(0, 0, −1),

∂θRCM = μ2ρ2

4μ1
(0, 0, 1). (A7)

The upper results at the equilibrium can be used to con-
struct the character table of the displacements and those can
be compared with the character table for the normal modes
(see Table V).

Nevertheless, displacement in the individual hyperspher-
ical coordinates are strictly speaking not the well-known
normal modes since the kinetic part of the Hamilto-
nian in Eq. (9) is not separable in the hyperangular
part.
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