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Method for spectral phase retrieval of single attosecond pulses utilizing the autocorrelation
of photoelectron streaking spectra
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We propose an algorithm for retrieving the spectral phase of an isolated attosecond pulse based on the
photoelectron spectra generated in atoms by the attosecond pulse in the presence of a time-delayed infrared
laser. Instead of employing the whole set of the streaking spectra as in the previous phase retrieval algorithms,
we calculate the autocorrelation (AC) of the streaking trace, and use it to extract the spectral phase. We illustrate
that this method can be used to extract narrow- as well as broadband attosecond pulses. The method converges
much faster and is more accurate. We also define two parameters, V and A. By comparing the AC pattern and the
V and A parameters from the experiment and from the retrieved pulse, this method provides a metric to evaluate
the accuracy of the retrieved pulse.
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I. INTRODUCTION

With the advent of attosecond pulse trains (APTs) [1] and
isolated attosecond pulses (IAPs) [2] since 2001, attosecond
pulses have been used to study electron dynamics in pump-
probe experiments [3]. In particular, with various generation
techniques, IAPs with ever shorter durations, for example,
pulses of duration as short as 130 as [4], 80 as [5], 67 as
[6], and then 53 as [7] and 43 as [8] have been reported.
To obtain the pulse duration, whether an APT or an IAP,
photoelectron spectra (called spectrogram or streaking trace)
generated by the attosecond pulse in the presence of an
infrared or a mid-infrared laser are measured by varying the
time delay between the two pulses. The spectral range of the
attosecond pulses covers from the extreme ultraviolet (XUV)
to soft x rays (SXRs). The polarizations of the two pulses are
chosen to be parallel and photoelectron spectra are measured
in the same direction. To find out the pulse characteristic in
the time domain, both the spectral amplitude and phase of
the pulse have to be determined. Using atomic targets, the
spectral amplitude of an IAP can be easily calculated from
the photoelectron spectra generated by the attosecond pulses
alone since atomic photoionization cross sections of atoms
have long been accurately determined from measurements, or
from accurate theoretical calculations. To obtain the spectral
phase of an APT, the so-called RABITT (reconstruction of
attosecond beating by interference of two-photon transitions)
method [9] is commonly used, while for an IAP, the spec-
tral phase is commonly extracted using the FROG-CRAB
(frequency-resolved optical gating for complete reconstruc-
tion of attosecond bursts) method [10]. Both methods are
based on some approximate theory.

In this article we will focus on the phase retrieval of an
IAP. Once the spectral amplitude and phase are obtained,
its Fourier transform would give the temporal amplitude and
phase of the IAP. For an attosecond pulse, one would generally
show the retrieved spectral phase and the intensity in the time

domain. The pulse duration is an approximate characterization
of a pulse. We will focus on the accurate retrieval of the
spectral phase, not just the pulse duration.

The accuracy of spectral phase retrieval is limited by a
number of factors. To begin with, one needs a simple and
accurate theory that can describe the photoelectron spec-
tra or the streaking trace. The commonly used strong-field
approximation (SFA) is simple, but it is not accurate for
low-energy photoelectrons, typically below about 40 eV. The
phase retrieval methods available today for an IAP all rely
on the SFA. In the FROG-CRAB method, additional approx-
imations are imposed. To fully utilize the existing FROG
phase retrieval algorithm, for example, the so-called central
momentum approximation is used (see below). This approx-
imation would limit the FROG-CRAB to attosecond pulses
that have narrow spectral width, for pulses that have duration
close to about 100 as and above. For broadband pulses, the
central momentum approximation is no longer applicable.
Three methods have been proposed beyond the FROG-CRAB:
PROOF [11], PROBP [12], and VTGPA [13]. All of these
algorithms are based on iterative methods. To “show” that the
retrieved results are converged, the retrieved attosecond pulse
is used to generate theoretical streaking spectra using the SFA.
By comparing to the experimental electron spectra visually, it
is often “concluded” that the retrieved results are correct and
the pulse durations are reported.

In reality, it is very difficult to ascertain how accurately
the spectral phase of an attosecond pulse has been retrieved.
This difficulty increases as the spectral band extends beyond
100 eV. In our test with “experimental” data generated from
the SFA model with known input pulses, it would often
take tens of thousands of iterations to reach “convergence”
for a known input pulse. The rate of convergence becomes
much slower when the input pulse has larger chirp. We have
found that for such broadband pulses, it is nearly impossible
to distinguish the streaking spectra even when the spectral
phases are significantly changed. In this paper, we show that
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the autocorrelation (AC) of the photoelectron spectra reveals
more clear variations. From the AC, we also define two met-
rics, called V and A. These two metrics can be used to quantify
the quality of the retrieved pulse. In addition, we found that
the AC pattern can be used directly for the phase retrieval.
Applying the PROBP method to the AC pattern, the revised
retrieval method is found to converge to the correct answer
much faster, and thus an accurate phase can be retrieved in
a shorter time. In this paper, we illustrate how this method
works for pulses that have bandwidth of about 30 eV or
less. Illustrations for water-window attosecond pulses with
bandwidth above 100 eV will be addressed in a future paper.

In the following, we first describe how the autocorrelation
of the streaking spectra is calculated. We then examine how
the shape of the AC pattern evolves as the spectral phase is
varied. The AC patterns are analyzed through two metrics
V and A quantitatively. We next use the PROBP [12,14,15]
method to retrieve the spectral phase using the AC pattern
instead of the streaking trace. This method is to be called
PROBP-AC. We will show that PROBP-AC converges much
faster than other existing methods that are based on retrieving
from the streaking spectra. The two metrics V and A of the
AC can also be used to evaluate the quality of agreement
between the retrieved pulse and the “experimental” pulse. The
AC pattern and the comparison of the PROBP-AC, PROBP,
and FROG-CRAB methods are illustrated in examples. Fur-
thermore, using the V and A metrics, we conclude that the
intensity of the IR should not be too low (say, less than
1012 W/cm2). We also show that the AC pattern is insensitive
to the transition dipole such that the PROBP-AC method
can also be used to retrieve attosecond pulses that generate
low-energy photoelectron streaking spectra.

II. THEORETICAL BACKGROUND AND THE
RETRIEVAL METHOD

A. Strong-field approximation and the autocorrelation pattern

The photoelectron spectrogram can be modeled by the SFA
[10,16]:

S(E , τ ) =
∣∣∣∣
∫ ∞

−∞
EXUV(t − τ )d (p + A(t ))

× e−iϕ(p,t )ei( p2

2 +IP )t dt

∣∣∣∣
2

, (1)

where E = p2/2 is the photoelectron energy and τ is the time
delay between the two pulses. EXUV(t ) is the electric field of
the XUV or the SXR pulse that is to be characterized. For sim-
plicity we use XUV to include SXR, and IR to include mid-IR
in the following unless otherwise specified. In Eq. (1), d (p) is
the transition dipole between the initial bound state and the
final continuum state of the photoelectron, Ip is the ionization
potential of the target atom, and ϕ(p, t ) is the phase function.
The vector potential of the IR is A(t ) = − ∫ t

−∞ EIR(t ′)dt ′. In
Eq. (1) we assume that the polarization direction of the XUV,
the IR, and the direction of the emitted electron are the same.
Atomic units are used in this paper unless otherwise noted.

In the energy domain, an XUV pulse is expressed as

EXUV(�) = U (�)e−i�(�). (2)

A single-color, multicycle IR field in the time domain is
expressed as

EIR(t ) = f (t ) cos[ωLt + ϕIR(t )]. (3)

In this work, we assume that the amplitude and phase of the
transition dipole d (p) are known, d (p) is calculated from
the single-active-electron model potential [17], and only the
ionization from the outermost subshell is considered. The IR
field has a Gaussian envelope and a zero carrier envelope
phase. We also assume that the spectral amplitude of the XUV,
i.e., U (�), is known since it can be extracted from XUV
photoionization experiment without the IR.

From the spectrogram an autocorrelation is defined by the
following:

Q(τ1, τ2) =
∫

S(E , τ1)S(E , τ2)dE . (4)

The integration limits typically cover the whole photoelectron
spectrum.

B. Pulse retrieval based on the autocorrelation pattern

In the simulation, the “experimental” spectrogram is ob-
tained from Eq. (1) with known input XUV and IR fields. For
simplicity in the retrieval we assume the IR field is known in
this work. Therefore our goal is limited to retrieve the phase
of the XUV, i.e., �(�). This unknown function is expanded
in terms of B-spline basis functions.

In general, a smooth function f (x) can be expanded as

f (x) =
n∑

i=1

giB
k
i (x), (5)

where gi are expansion coefficients; i is the index of the
B-spline function. The kth-order B-spline functions Bk

i (x) are
defined through

B1
i (x) =

{
1, xi � x � xi+1,

0, otherwise,
(6)

Bk
i (x) = x − xi

xi+k−1 − xi
Bk−1

i (x) + xi+k − x

xi+k − xi+1
Bk−1

i+1 (x). (7)

Here {xi} are the knot points. If there are n B-spline basis
functions of the order k, the total number of knot points is n +
k. The B-spline function is a powerful tool for fitting a smooth
function [18], and it has been widely used in computational
physics.

In our situation, we define the guessed B-spline expan-
sion coefficients for the spectral phase as {bi}. From these
coefficients the guessed spectral phase of the XUV can be
constructed, and then we calculate the spectrogram by Eq. (1)
and the AC pattern by Eq. (4). The expansion coefficients {bi}
are to be determined when the error function defined by

E [bi] =
∑
k,l

[Q0(τk, τl ) − Q1(τk, τl )]
2 (8)

reaches the minimum, where Q0 and Q1 are the input and
reconstructed AC patterns, respectively. In the numerical com-
putation we discretize the spectrogram S(E , τ ) and the AC
pattern Q(τ1, τ2) on grid points. Typically we chose 100 to
500 points in time delay and 100 points in energy. We use
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FIG. 1. SFA-simulated spectrogram (upper panel) and autocorrelation pattern (lower panel) for the TL and three linearly chirped XUV
pulses. The four XUV pulses are centered at 164 eV with a bandwidth of 23 eV. The FWHM durations of these pulses are (a) 80, (b) 83,
(c) 92, and (d) 160 as, respectively. The autocorrelation patterns (e)–(h) are plotted within one optic cycle of the IR field.

the genetic algorithm (GA) to find the optimal parameters
{bi} that would minimize Eq. (8). The GA runs a large
number of generations (typically 300 to 500 generations) until
convergence is achieved. The optimal parameters {bi} are then
used to reconstruct the XUV pulse.

We describe how to choose the GA and B-spline parame-
ters in more detail in the Appendix.

III. AUTOCORRELATION PATTERNS OF DIFFERENT
XUV PULSES WITH ATTOCHIRP

A. Streaking spectra and autocorrelation pattern

Consider an XUV pulse with a Gaussian spectral ampli-

tude U (�) = U0e
−2 ln 2 (�−�0 )2

(�� )2 and a quadratic spectral phase

�(�) = a2
(�−�0 )2

(��/2)2 . Here we use �0 = 164 eV as the central
photon energy and �� = 23 eV as the FWHM (full width at
half maximum) bandwidth, which can support a transform-
limited (TL) pulse (corresponding to a2 = 0) of 80 as in
the FWHM duration. The coefficient a2 is a measure of the
attochirp, or equivalently the duration of the chirped pulse
compared with the TL duration. Figures 1(a)–1(h) show the
spectrograms and correlation patterns for the TL pulse and
three chirped pulses with different durations. The spectro-
grams are simulated using SFA according to Eq. (1). The IR
used here is 800 nm in wavelength, 5.7 fs in FWHM duration,
and 2.5 × 1012 W/cm2 in peak intensity. The autocorrelation
patterns are calculated based on Eq. (4) with τ1, τ2 within one
optical cycle of the IR field. In this example, while one can

FIG. 2. Autocorrelation pattern over one optical cycle and the definition of (a) the volume (V) and (b) asymmetry (A) of the autocorrelation
over half an optical cycle. The black dot in Fig. 2(a) is the maximum point of Q(τ1, τ2) for a 106-as chirped pulse. In Fig. 2(b), the center of
AC is at (0.25, 0.25) which is the position of the maximum defined with respect to TL pulse.
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FIG. 3. The two metrics of the autocorrelation pattern. For each
streaking trace, its V and A values are given by a point on the V-A
plane. These points form a smooth curve if the pulses are linearly
chirped. For pulses that are nonlinearly chirped, they would lie below
this curve. Three such pulses M115, M122, and A160 are shown.

see that the streaking spectra display some fine differences
(the yield decreases in the half cycle when the electron energy
drops with increase of time delay) as the duration of the XUV

pulse is increased, the change is much more pronounced in
the AC pattern (the strength of the northeast quarter of each
pattern drops rapidly). Also, from the AC pattern Q(τ1, τ2)
one can clearly distinguish the chirped pulse from the TL
pulse. The TL pulse yields a squarelike pattern with high sym-
metry, while the chirped pulse gives an asymmetric pattern.
Therefore if one wants to confirm that the XUV pulse is nearly
transform-limited, one only needs to calculate its AC pattern
to show that it is nearly symmetric.

B. The V and A metrics of the AC pattern

In order to further distinguish different chirps from the
AC pattern, we introduce two quantitative metrics. The metric
“volume” (V) is defined as V = ∫∫

Q(τ1, τ2)dτ1dτ2 and the
normalized V is given by

Vnormalized =
∫∫

Q(τ1, τ2)dτ1dτ2∫∫
QT L(τ1, τ2)dτ1dτ2

, (9)

where the integral is over a square box centered at the peak of
Q(τ1, τ2) with the side length equal to one-half optical cycle
of the IR. For this TL case, the Q(T L)(τ1, τ2) peak point is at
(0.25, 0.25), as indicated in Fig. 2(a). For the chirped pulse,
we calculate the asymmetry A of the AC with respect to this
center (0.25, 0.25) of the peak of the TL pulse; see Fig. 2(b).

(a) (b)

(c) (d) (e)

FIG. 4. Temporal envelope of intensity (a) and spectral phase (b) for the three pulses, 115, M115, and M122 (upper panel). Autocorrelation
patterns (c)–(e) for the three pulses (lower panel) are shown.
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FIG. 5. Comparison between the input and the retrieved XUV intensity, for the case of linearly chirped XUV pulses with durations of
(a) 141 and (b) 115 as, and the nonlinear chirped pulses (c) M122 and (d) M115. The retrieval is based on fitting the autocorrelation pattern.
The output is from 500 iterations.

Here A is given by

A = QA1 − QA2

QA1 + QA2

, (10)

where QA1 and QA2 are the integrals of Q(τ1, τ2) over the tri-
angle region A1 and A2, respectively, as indicated in Fig. 2(b).
By changing the chirp parameters of the XUV pulse one
can calculate the corresponding AC pattern and the two
metrics. Figure 3 shows the metric volume V (vertical axis)
and asymmetry A (horizontal axis) for several chirped pulses
whose FWHM durations are given as numbers near the data
markers. For linearly chirped pulses (red squares) one can
see that as the pulse duration increases the volume decreases
and the asymmetry increases monotonically. If one knows that
the pulse is linearly chirped, then from the (V, A) values of the
experimental AC pattern, one can read off the pulse duration
from the red curve in Fig. 3.

A few words are needed to describe how we construct the
AC pattern. It is noted that we set the time delay to be zero
when the peaks of the XUV and the IR pulses coincide in
time. As the spectral phase of the XUV pulse is changed,
its peak position in time is also changed. Figure 2(a) shows
that the time shift of the peak of a 106-as pulse is at 0.125
optical cycle compared to the peak of the 80-as TL pulse.
In comparing the streaking spectra, the absolute signal in the

experimental streaking spectra is normalized to 1.0. The same
normalization is also used for each streaking spectrogram
calculated from the SFA.

C. AC patterns for nonlinearly chirped pulses

In general, an XUV pulse has a more complicated spec-
tral phase. First, we consider that the spectral phase of
an XUV pulse from high-order harmonic generation in a
gas medium is well behaved such that it can be expanded
by �(�) = a2

(�−�0 )2

(��/2)2 + a3
(�−�0 )3

(��/2)3 + a4
(�−�0 )4

(��/2)4 + a5
(�−�0 )5

(��/2)5 ,
where we set the phase to be zero at the center of the spectral
amplitude of the pulse. For such general cases, the V and A
values of the AC pattern will not fall on the smooth curve
in Fig. 3. In Fig. 4, we construct two pulses with nonlinear
chirps, called M115 and M122, respectively, to be compared
to the one called 115 which has linear chirp only. All three
pulses share the same spectral amplitudes. The spectral phases
of the three pulses are shown in Fig. 4(b), where each has
FWHM spectral width of 23 eV. The temporal profiles of the
three pulses are shown in Fig. 4(a). Note that the FWHM of
the main peaks are very close to each other to within 2%,
but the FWHM of the main peak alone does not correctly
represent M115 and M122 pulses since both pulses have
non-negligible subpeaks beyond the main peak. In fact, for
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FIG. 6. TDSE-simulated Ne spectrograms [(a)–(c)] and the corresponding AC patterns [(d)–(f)]. The three XUV pulses are centered at
40-eV photon energy, with an FWHM bandwidth of 11.5 eV. The TL pulse has a duration of 160 as, while the two linearly chirped pulses are
200 as and 250 as, respectively.

FIG. 7. SFA-simulated Ne spectrograms [(a)–(c)] and the corresponding AC patterns [(d)–(f)]. Parameters are the same as in Fig. 6.
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FIG. 8. Retrieval results for the (a)–(b) 160-as, (c)–(d) 200-as, and (e)–(f) 250-as XUV pulses from the TDSE-simulated data in Fig. 6.
Three retrieval methods are shown here. The results show the increasing accuracy from the FROG-CRAB, PROBP, and PROBP-AC methods,
as compared to the input pulse.

M122, the electric field magnitude at the second peak is
40% of the field at the main peak. From the constructed AC
patterns, the three different pulses can be easily distinguished;
see Figs. 4(c), 4(d) and 4(e). Even the (V, A) values can be
used to distinguish the three pulses; see the labels in Fig. 3
for M115 and M122. Both of them are located away from
the red curve where the 115 pulse is located. Thus we know
both M115 and M122 have nonlinear chirps, but the main
peak has FWHM of 115 as and 122 as, respectively. For
pulses with nonlinear chirps, multiple parameters are needed
to characterize the spectral phase within the spectral width
of the pulse; thus accurate retrieval of the spectral phase in
general will take more effort, and a single parameter like pulse
duration is unable to characterize the pulse.

D. PROBP-AC algorithm for attosecond pulse characterization

In Ref. [12] we used the PROBP (phase retrieval of broad-
band pulses) method to obtain the spectral phase of a broad-
band pulse using the streaking trace directly. This method is an
improvement over the FROG-CRAB since it does not employ
the central momentum approximation. Here we use the AC
pattern of the streaking spectra and the same optimization
method of PROBP to extract the spectral phase; see Eq. (8).
This method is called PROBP-AC. Figures 5(a)–5(d) show
that the input pulses can be accurately retrieved using the
PROBP-AC easily. For the pulses shown here, it takes about
500 iterations to get converged results, much faster than the
PROBP method of several thousand iterations.

IV. AUTOCORRELATION PATTERNS FROM TDSE
SIMULATION COMPARED TO SFA

So far we use SFA to simulate the experimental spec-
trogram. It is well known that the SFA is not accurate in

the low-energy region. In this section, we use the streaking
spectra generated by solving the time-dependent Schrödinger
equation (TDSE) and take the results as the experimental data.
The resulting streaking spectra and the AC patterns are shown
in Figs. 6(a)–6(f). The spectral amplitude takes a Gaussian
form with �0 = 40 eV and �� = 11.5 eV which can support
a TL pulse with the duration of 160 as. We include three XUV
pulses, a TL pulse, and two linearly chirped pulses, with the
durations of 160 as, 200 as, and 250 as, respectively. Ne is
chosen as the target gas. The IR field is 800 nm in wavelength,
4.5 fs in FWHM duration, and 1.0 × 1013 W/cm2 in peak
intensity. The same parameters are also used to calculate the
streaking spectra using the SFA equation and the AC patterns.
The SFA results are shown in Figs. 7(a)–7(f).

Comparing the TDSE with the SFA results, it is quite
clear that the streaking spectra do not agree very well. Can
the TDSE streaking spectra or their AC patterns be used to
extract accurate XUV pulses, knowing that all the retrieval
methods rely on Eq. (1) which gives the spectra shown in
Fig. 7? The retrieved results are shown in Fig. 8 where the left
panels compare the XUV intensities in the time domain and
the right panels compare the spectral phases. In Figs. 8(a),
8(c) and 8(e), all three input pulses in the time domain are
accurately retrieved by the three methods—the FROG-CRAB,
the PROBP, and the PROBP-AC. For Figs. 8(b), 8(d) and

TABLE I. Comparison of the number of iterations and comput-
ing times used for the three different retrieval methods.

Iterations Calculation time

PROBP-AC 500 20 minutes
PROBP 5000 2 hours
FROG-CRAB 100 000 1 day
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8(f), the retrieved spectral phases in the energy domain are
compared. Near the center of the spectral domain (where we
set the phase to zero at the center of the spectral amplitude), all
the phases from the three methods agree with the input value,
but upon closer look, the PROBP-AC is the most accurate one,
while the FROG-CRAB is the worst. In addition, in terms of
rate of convergence or computer time, the PROBP-AC method
is far superior. For typical pulses like those shown in Fig. 8,
the number of iterations and the computer times are listed
in Table I. Clearly the PROBP-AC method proposed here is
much faster.

Based on the extracted temporal profiles of the three
pulses shown in Fig. 8, one may say that the XUV pulses can
be accurately retrieved even for low-energy photoelectrons
where the streaking spectra calculated using SFA are known
to be inaccurate. However, the accuracy here is relative.
From the right panel of Fig. 8 we can extract the error of the
phase difference between 40 eV (where the phase is set to
zero) and 35 eV. Based on the numerical values calculated,
we found that the error of the phase difference between
35 and 40 eV (FWHM is 11 eV) is about 0.1 radians for
FROG-CRAB and 0.01 radians for the PROBP-AC. For
an error of 0.1 radians between the two energy points, it
amounts to an error of about 12 as in time delay (or group
delay in optics). This sets the stringent condition needed for
retrieving very accurate spectral phase from the experimental
data. Based on its fast convergence and more accurate
phase retrieval, the PROBP-AC method should be used to
replace the FROG-CRAB method even for the narrowband
pulses, as the present example demonstrated. The well-cited
photoionization time-delay difference from 2s and 2p levels in
Ne reported in Schultze et al. [19] and Wei et al. [20] probably
should be reexamined again with our retrieval method.

We have also applied the PROBP-AC method to retrieve
an attosecond pulse where the XUV phase is not given by a
polynomial expansion. In Fig. 9, we provide such an example.
The AC pattern for a chirped pulse with arbitrary phase is
presented in Fig. 9(a). The parameters of V and A for this pulse
(called A160) are 0.55 and 0.1, respectively. On the V-A plane,
this A160 pulse is located outside the curve for the linearly
chirped pulse; see Fig. 3. The input XUV phase and temporal
envelope are shown in Figs. 9(b) and 9(c). The figures also
show that they are accurately retrieved by the PROBP-AC
method.

We use this example to illustrate the computational details
of our retrieval method in the Appendix. In this case, the
GA parameters we use are provided as follows: xmin = 0.0,
xmax = 100.0, L = 15, Pcross = 0.5, n = 7, and N = 20. For
B-spline functions, we use k = 7 and n + k = 14. After about
500 generations, we get converged results.

V. EFFECT OF IR WAVELENGTH AND INTENSITY, AND
DIPOLE OF THE ATOM

The sensitivity of the AC pattern to attochirp depends
on the IR pulse parameters, e.g., wavelength and intensity.
Consider a linearly chirped XUV pulse, with �0 = 164 eV
and �� = 23 eV. We can define a parameter γ which is
the ratio of the duration of the chirped pulse to the duration
of the TL pulse (80 as in this case) to indicate the amount

FIG. 9. AC pattern (a) for a 160-as chirped pulse with arbitrary
phase is shown. Comparison between the input and the retrieved
XUV phase (b) and intensity (c). The laser parameters are the same
as that in Fig. 5 except that a more complex phase is used as input.

of attochirp. In Fig. 10(a) we plot the dependence of the
metric volume from the AC pattern versus γ . On the left
panel we fix the IR wavelength to 800 nm and change its
intensity. It is clear that the slope decreases with decreasing IR
intensity. This means the streaking contrast is weaker at lower
IR intensity, thus making the retrieval method less sensitive to
the spectral phase.

In Fig. 10(b) we fix the IR intensity to 2.5 × 1012 W/cm2

and change its wavelength. The metric volume decreases
monotonically with γ , and the slope reveals the sensitivity to
wavelength. Larger sensitivity can lead to faster convergence
and better performance of the retrieval method. We can see
the best sensitivity happens when using 800-nm and 1200-nm
IR wavelengths, while the performance becomes lower when
we either increase the wavelength to 1800 nm or decrease the
wavelength to 400 nm. The conclusion may differ somewhat
if both wavelength and intensity of the IR are varied at the
same time.

Finally we also check the sensitivity of the AC patterns
and the PROBP-AC method to the magnitude of the atomic
transition dipole. The dependence is very small. In Table II
we show four examples and express the (V, A) values obtained
for the four different pulses, using the actually calculated
atomic dipole as well as taking the dipole to be independent
of energy. Table II shows that the (V, A) values for these
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FIG. 10. (a) Dependence of the metric volume on the XUV chirp for various IR intensities. Only pulses with linear chirp are considered.
The horizontal axis gives the ratio of the pulse duration in units of the duration of the TL pulse. The XUV pulses are centered at 164 eV with
a bandwidth of 23 eV. The TL pulse duration is 80 as. (b) The dependence of the metric volume vs wavelength of the IR at a fixed intensity of
2.5 × I0, I0 = 1012 W/cm2.

pulses are essentially the same. Thus accurate atomic dipole
moment is not needed for the retrieval of the XUV pulses
in streaking experiments, at least for the narrowband XUV
pulses of spectral widths of tens of eVs.

VI. SUMMARY

In this article, we reported a method of retrieving the
spectral phase of an IAP in the XUV to the SXR region.
We note that the spectral amplitude of an IAP can be readily
obtained from the photoelectron spectrum by ionizing a rare
gas atom using the XUV or the SXR pulse alone. To retrieve
the spectral phase, several algorithms have been proposed
so far, including FROG-CRAB, PROBP, and VTGPA, by
analyzing the streaking spectrogram generated by photoion-
ization of an atom by the XUV pulse in the presence of
a time-delayed infrared pulse. Unlike all of these previous
works where the spectral phase is retrieved iteratively from
analyzing the streaking trace, in this article we retrieve the
spectral phase from analyzing the autocorrelation (AC) of the
trace, and our method is called PROBP-AC. We found that this
method converges faster and that it is capable of retrieving
the correct spectral phase. By comparing the AC generated
from the retrieved pulse with the AC from the “experimental”
trace, we are able to visualize clearly how good the retrieved
pulse is. In addition we defined two parameters V and A from
the AC pattern. The agreement of these two numbers from

TABLE II. Comparison of (V, A) values of the AC patterns of
the streaking trace for four different XUV pulses, calculated using
Eq. (1) where the transition dipole is from the actual Kr target atom
or approximated by a constant.

(V, A) (actual dipole) (V, A) (constant dipole)

106 as (0.75, 0.049) (0.75, 0.048)
115 as (0.68, 0.058) (0.69, 0.057)
141 as (0.62, 0.079) (0.63, 0.078)
M115 as (0.68, 0.040) (0.73, 0.030)

the retrieved pulse and from the “experiment” also provides
another check on how accurately the pulse is retrieved.

In this article, we present the PROBP-AC method and use
examples from attosecond pulses that have spectral bandwidth
of about 30 eV. We compare this method against the ones
previously used like PROBP and FROG-CRAB to establish
that our method is more efficient and more accurate. The
PROBP-AC method is particularly more powerful than other
prevailing retrieval methods for pulses that have bandwidth
higher than 100 eV. This topic will be addressed in a separate
publication.
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APPENDIX: HOW TO CHOOSE GA
AND B-SPLINE PARAMETERS

The genetic algorithm (GA) is a heuristic search method
used for solving a multidimensional optimization problem.
The algorithm is introduced based on the concept of natural
selection in Darwin’s evolutionary theory. The general scheme
of searching the optimal solution in the GA involves the
following steps: initialization of population for the first gener-
ation, fitness evaluation of the individuals, selection of parents
based on fitness, and crossover (sometimes called recombina-
tion) and mutation for producing offspring. A new generation
is then produced. If the fitness of the best individual in the new
generation does not meet the requirement of termination, we
repeat the same procedure until the optimal solution is found.

The genetic algorithm has been widely applied in various
problems. Here, we focus and elaborate on the application
of the genetic algorithm in our phase retrieval problem, i.e.,
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PROBP-AC. In PROBP-AC, we expand the unknown phase of
the XUV pulse in a set of B-spline basis functions (with size
n and order k), as is written in Eq. (5). So the goal is to find
the expansion coefficients {bi} (∀ i = 1, 2, . . . , n). One set of
{bi} is called an individual of the population in a generation
in GA terminology. The coefficients {bi} are assumed to be
real numbers without losing generality. Each bi is coded
into a binary representation with length L via the mapping
formula

bi = xmin + xmax − xmin

2L − 1

L−1∑
j=0

b(B)
L− j2

j (A1)

for xmin � bi � xmax. The superscripted notation b(B)
L− j (for

j = 0, 2, . . . , L − 1) is the (L − j)th digit in the binary rep-
resentation of bi when one counts the digits from left to right.
In other words, 2L numbers out of an infinitely many real
numbers defined in the domain [xmin, xmax] are represented
in our binary expression. For example, xmin (xmax) is equal
to 000000000000000 (111111111111111) in the binary form.
With the binary representation, one individual is characterized
by n length-L binary-bit strings. The whole string (of size
n × L) is sometimes called a chromosome and the segments
on it are called genes (with size L). The minimum value, the
maximum value, and the gene length L should be chosen large
enough in order to cover the range in which one can reproduce
the optimal solution and reach the wanted precision. One
important note is that the retrieved phase should agree with
the true phase up to an arbitrary constant phase because we
are fitting the trace/autocorrelation and they are the same with
any extra constant phase added. In principle, as long as xmin

and xmax are far part enough, we should be able to find the
solution.

The evolution operations (such as crossover and muta-
tion) act on this binary representation, i.e., b(B)

L− j (for j =
0, 2, . . . , L − 1). The real-number expression and the binary
expression can be interchanged to each other via Eq. (A1) and
its inverted version.

After setting up the problem, we initialize the population.
Assume there are N individuals in one generation (note that N
is different from n). A uniform random real number generator
(between [0,1]) is used to produce the population in the first
generation. If the random number is less then 0.5, then the
digit is set to zero. Otherwise, it is set to one. A total number
of (N × n × L) random numbers are thrown for initialization.

Next, we evaluate the fitness of each individual. The fitness
function F is defined, closely related to Eq. (8), as

F [{bi}] = −E [{bi}], (A2)

where the negative sign is added to ensure a larger value
of F corresponds to a better fitness. The fitness level of
an individual is used to perform the third step: selection of
parents. We use tournament selection. Two individuals of the
population are selected out at random and the one with greater
fitness is chosen as the first parent. The same selection scheme
is applied again to select the second parent. Next, the selected
pairs then go through crossover to produce one new offspring.
The crossover scheme applied here is uniform crossover with

a crossover probability Pcross = 0.5. This means that every
bit of the offspring is independently chosen from the two
parents with equal probability. A different crossover proba-
bility could be adopted if one wishes the offspring to inherit
more genetic information from one parent than the other.
Other crossover schemes exist as well [21]—for example, a
single-point crossover and its variant, the M-point crossover
(M > 1). However, the uniform crossover avoids the potential
bias for two neighboring bits to be inherited together, so we
prefer it in our calculations.

This selection and crossover scheme are performed N
times such that N offspring are produced. Nevertheless, the
offspring produced at this stage are not finalized yet. We allow
genetic variations, which are not inherited from parents, to
maintain genetic diversity and prevent premature convergence
of the solution. The mutation operator is often used to achieve
this goal. Various mutation schemes exist—for example,
jump mutation and creep mutation. In jump mutation, we go
through all bits in the population and flip the bit when a drawn
random real number is less than the mutation probability,
Pmutate. We typically set Pmutate = 1/N . For creep mutation, we
need to throw another random real number. If it is smaller than
the creep probability, then we perform the creep mutation.
Creep mutation, as the name suggests, mutates in the near
area of the parents. Once creep mutation is activated, the
individual is increased or decreased to the nearest possible real
numbers in the parameter space with equal probability. Pcreep

should be not too large. We typically set Pcreep = 0.02–0.04
for N = 20–100. These two mutation schemes can be used
together or independently. After mutation, a new generation
is formed. If one wants to keep the best individual from the
previous generation, elitism can be applied. That is, if the
best individual is not reproduced, we randomly replace one
individual by the best one.

Instead of using mutation, a so-called “micro-GA” may
be used to replace mutation after the new generation is pro-
duced. What the micro-GA does is the following: first we
check whether the population is “converged.” We measure the
number of different bits from the best member. If the total
number of different bits are less than 0.05 × [(N − 1) × n ×
L], then the population is considered “converged.” If so, we
restart the next run by using a new generation formed by the
best individual and the new randomly generated parents. The
whole procedure is repeated until we meet the requirement of
termination.

The efficiency of the GA depends on many factors. Exper-
imenting on the choice of the input parameters for the GA
is necessary. Apart from selections of the input parameters,
one intrinsic question one should always ask is how good
the B-spline basis functions are to describe the true phase.
Our strategy to overcome the problem is to run over different
combinations of (n, k) for a few generations (for example,
100) and pick the basis set with fast descent in E [{bi}]. Based
on our observations, running k from 4–7 and n from 10–14
would often guide us to select the best n and k for our cases.
One last freedom in the B-spline basis function is how one
places the (n + k) knots in the energy regime of interest. Our
experiences show that placing more knots near the central
energy of the XUV pulse always allows a faster evolution of
the GA to the optimal solution.
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