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Reconstruction of the complex angle-dependent photoionization transition dipole
from a laser-dressed streaking experiment

Xi Zhao,1,* Hui Wei,1 Wei-Wei Yu,1,2 and C. D. Lin1

1Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
2School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, People’s Republic of China

(Received 27 June 2018; published 6 November 2018)

We study the retrieval of the angular dependence of the photoionization transition dipole phase of an
attosecond XUV pulse in order to reconstruct the whole photoelectron wave packet after the photoemission
process. Using a one-electron model Ar atom, we show that the full electron wave packet can be reconstructed
from IR-free photoelectron angular distributions and the streaking electron spectra in an IR-dressed XUV
photoionization, with photoelectrons along the common polarization direction of the two pulses. The method
relies on the validity of the strong-field approximation so it is valid only for higher energy photoelectrons. We
also point out that a single photoionization group time delay is not enough to represent a photoemission process;
instead, a complete characterization of the electron wave packet requires the retrieval of the spectral phase over
the whole bandwidth of the wave packet.
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I. INTRODUCTION

The advent of attosecond technology has opened up the
opportunity towards studying the nature of electron dynamics
in atomic [1–9], molecular [10–15], and condensed materials
[16–19] at the unprecedented time scale [20]. In a typical
attosecond streaking experiment, photoelectron spectra are
generated by XUV attosecond pulses in the presence of a
moderate intense IR laser, with tunable time delay between
the two pulses. Traditionally the streaking experiments are
used to characterize attosecond pulses in the time domain.
If the XUV pulse is an attosecond pulse train (APT), then
photoelectrons generated by the XUV can absorb or emit one
more photon from the IR field, resulting in sidebands at even
harmonic energies. The signals of the sideband will modulate
with the time delay at twice the frequency of the IR photon.
This method was first used to extract the spectral phase of
an APT, and the method is called RABITT (reconstruction of
attosecond beating by interference of two-photon transitions)
[21,22]. If the XUV is an isolated attosecond pulse (IAP)
[23–25], the presence of a streaking IR field would generate a
modulating continuum photoelectron spectra as the time delay
is varied. Such spectra are called a spectrogram or a spectral
trace [26]. It can be used to extract the phase of the IAP using
the so-called FROG-CRAB (frequency-resolved optical gat-
ing for complete reconstruction of attosecond bursts) method
[27]. Since the spectral intensity of the APT and the IAP
can be extracted directly from the IR-free single-photon XUV
ionization of atoms, combining the retrieved spectral phase
of the XUV pulse allows the reconstruction of the attosecond
pulse in the time domain. In both applications, the IR field
should be moderate such that IR alone does not ionize the
atom. The method also requires accurate knowledge of the
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target atom which can be obtained from synchrotron radiation
experiment or from theoretical calculation. In most of the
streaking experiments, both the linearly polarized XUV and
IR pulses have the same polarization direction, which is to be
called the z axis, and photoelectrons are measured only along
the z axis.

To retrieve the phase of an IAP, an accurate and simple
theory for IR-dressed photoelectron spectra is required. The
strong-field approximation (SFA) [28] is a simple theory,
but it is not accurate for describing the streaking spectra
when the photoelectron energy is less than, say, 30 or 40 eV.
Still it is the only theory available today for retrieving the
spectral phase. In fact, additional assumptions are used in
the FROG-CRAB method, thus results retrieved using the
FROG-CRAB method have to be taken with caution [29,30].
In particular, the so-called central momentum approximation
was used in FROG-CRAB. This approximation is not valid for
broadband pulses. Algorithms have been developed such as
the PROBP (phase retrieval of broadband pulses) [31] and the
VTGPA (Volkov-transform generalized projection algorithm)
[32]. Both methods can be used to retrieve the spectral phase
of broadband pulses.

It is obvious that if the phase of the XUV pulse is known,
then the same spectrogram may be used to retrieve the atomic
properties. Since an IR-free XUV photoionization experiment
allows the determination of the amplitude of the one-photon
transition dipole, ideally the goal is to obtain the phase of the
transition dipole from the spectrogram. Having both transition
dipole amplitude and phase for single-photon ionization along
the polarization axis, one retrieves the full photoelectron wave
packet along the z axis. On the other hand, photoionization
also generates electrons at other angles. In principle one
would like to determine the whole electron wave packet over
all the angles [33,34]. Using APTs, such questions have been
addressed in a recent experiment by Heuser et al. [35]. We are
not aware of similar experiments performed with IAPs so far.
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This article is organized as the following: Sec. II introduces
the theoretical background and the relevant mathematical
expressions, including the derivation of the angular-dependent
transition dipole and the SFA model of the streaking measure-
ment. Section III discusses our two-step method for phase
retrieval in detail. Several examples are given in Sec. IV to
demonstrate the performance of our method in which the
input spectrograms are simulated by the SFA model and by
solving the time-dependent Schrödinger equation (TDSE),
respectively. We conclude this work in Sec. VI by emphasiz-
ing that it is preferable to retrieve the amplitude and phase
of the atomic dipole, in particular, in terms of the partial
wave decomposition, instead of the oversimplification of the
prevailing “photoionization time delays” studies for electrons
emerging along the polarization axis only. Atomic units are
used throughout this article unless mentioned.

II. ANGULAR DEPENDENCE OF THE AMPLITUDE AND
PHASE OF PHOTOELECTRON WAVE PACKET

In this article, we are interested in retrieving the whole
electron wave packet when a one-electron atom is photoion-
ized by an isolated attosecond pulse. For clarity, we first derive
the expression of the photoelectron wave packet following the
elementary quantum theory for a one-electron atom and the
spin is not included. The atomic Hamiltonian is given as

H0 = −∇2

2
+ V (r ). (1)

Specifically we treat a one-electron model argon atom. The
electron is under the influence of a model potential V (r )
which is parametrized as in Tong and Lin [36] in the
form of

V (r ) = −Zc + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (2)

Here Zc = 1 is the asymptotic charge seen by the electron.
The potential in Eq. (2) can also be expressed as the sum
of the Coulomb potential −1/r and a remaining short-range
potential. We can solve the time-independent Schrödinger
equation numerically to obtain the bound and continuum wave
functions. The initial state,

〈r| i〉 = Rnili (r )Ylimi
(r̂ ), (3)

has well-defined orbital angular momentum li , mi is the mag-
netic quantum number, Rnl (r ) is the radial wave function, and
Ylm is the spherical harmonic. The continuum state in which
the emitted photoelectron has energy E = k2

2 and direction k̂

can be constructed by partial wave expansion as

|Ek̂〉 =
∑
LM

e−iηL(E)Y ∗
LM (k̂)|ELM〉, (4)

〈r|ELM〉 = REL(r )YLM (r̂ ), (5)

where REL(r ) is the energy-normalized radial wave function
of the continuum state, ηL(E) = −Lπ

2 + σL(E) + δL(E) is
the phase shift for the partial wave with angular quantum num-
ber L, σL = arg [�(L + 1 − iZc/k)] is the Coulomb phase
shift, and δL is the phase shift due to the short-range po-
tential. In spherical coordinates the direction of the electron

momentum k̂ can be denoted by the polar angle θk and
azimuthal angle ϕk .

Consider one-photon ionization by an XUV pulse. Choose
the z axis as the polarization axis of the light. In the frequency
domain the XUV pulse is expressed by ẼXUV(�). Then we
can write down the wave packet of the photoelectron based on
the first-order time-dependent perturbation theory as

|ψ (t )〉 =
∑
lm

∫
dEẼXUV(E+Ip )e−iEt 〈Elm|z|nilimi〉|Elm〉

=
∫

dEẼXUV
(
E + Ip

)
e−iEt

{〈
RE,li−1

∣∣r∣∣Rni,li

〉

× 〈
Yli−1,mi

∣∣ cos θr

∣∣Yli ,mi

〉∣∣E(li − 1)mi〉
+ 〈

RE,li+1

∣∣r∣∣Rni,li

〉〈
Yli+1,mi

∣∣ cos θr

∣∣Yli ,mi

〉
× |E(li + 1)mi〉

}
. (6)

Here Ip is the ionization potential of the initial bound state. In
photoelectron measurements, usually one projects this wave
packet onto a stationary state |Ek̂〉, that is,

〈Ek̂|ψ (t )〉 = ẼXUV(E + Ip )d(E, k̂)e−iEt . (7)

The modulus square of Eq. (7) gives the photoelectron yield
measured in the direction k̂. Removing the electric field of the
XUV from Eq. (7), we obtain the complex angular-dependent
dipole matrix element:

d(E, k̂) = eiηli−1(E)Yli−1,mi
(k̂)

〈
RE,li−1

∣∣r∣∣Rni,li

〉
× 〈

Yli−1,mi

∣∣ cos θr

∣∣Yli ,mi

〉 + eiηli+1(E)Yli+1,mi
(k̂)

×〈
RE,li+1

∣∣r∣∣Rni,li

〉〈
Yli+1,mi

∣∣ cos θr

∣∣Yli ,mi

〉
. (8)

While the modulus square of Eq. (8) can be deduced from
single-photon ionization measurement, its phase is not avail-
able. If the phase can be measured, then we can say that the
full electron wave packet from the simple photoionization
experiment by the known attosecond pulse is completely
determined.

To simplify the analysis, take the Ar atom as an example
where ni = 3, li = 1. Denote the radial matrix elements as
WL(E) = 〈REL|r|R31〉. By working out the angular part we
have

d0(E, k̂) =
√

1

12π
{W0(E)eiη0(E)

+W2(E)eiη2(E)(3 cos2 θk − 1)}, (9)

for the case where the initial state has mi = 0. For the initial
state with mi = ±1, we have

d±1(E, k̂) = ±
√

3

8π
W2(E)eiη2(E)cos θk sin θke

±iϕk . (10)

In most of the previous so-called photoionization time
delay experiments and theories the amplitude and phase of
the photoelectron wave packet is studied along θk = 0◦ only.
In fact, what have been reported usually is not the phase of
the dipole, but rather the first derivative of the phase with
respect to the energy of the electron. Such a derivative in
optics in general is called group delay, but it has been widely
called “photoemission time delay” in the attosecond science
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community [37,38]. If there is only one partial wave (as is
the case for mi = ±1) contributing to the phase, this group
delay is similar to the Wigner time delay [39,40] which
was defined for the phase of a fixed angular momentum
quantum number. We will use Wigner time delay to mean the
first derivative of the dipole phase with respect to electron
energy. Since the dipole phase in Eq. (8) is dependent on
the scattering angle of the photoelectron, one can ask the
angle-dependent dipole phase or the angle-dependent Wigner
time delay. For photoelectrons along the polarization axis, the
phase or the Wigner time delay have been extracted from
analyzing XUV+IR streaking spectra. To obtain the same
quantities at other angles, does one need to examine streaking
photoelectron spectra along each direction of the photoelec-
tron? The angular dependence of photoelectron time delay has
been investigated recently in experiments and in simulations
[7,34] if the XUV is an APT. To our knowledge, no similar
studies have been carried out using isolated attosecond pulses
yet. Can one extend the streaking method to obtain the phases
of photoelectrons emerging at other angles?

In standard photoionization experiment, the measured an-
gular resolved single-photon ionization electron spectra is the
average of the three ionization channels since the experiment
in general does not select the initial values of mi . Thus the
photoionization differential cross section is given by

dσ

d�k

∝ 1

3
{|d0(E, k̂)|2 + |d+1(E, k̂)|2 + |d−1(E, k̂)|2}.

(11)
One can easily calculate from Eqs. (9) and (10),

dσ

d�k

= σtotal(E)

4π
[1 + β(E)P2(cos θk )], (12)

where σtotal(E) is the total cross section. In this work,

σtotal(E) = 1

3π
|W0(E)|2 + 2

3π
|W2(E)|2, (13)

and the β parameter,

β(E) = 2|W2(E)|2 + 4W0(E)W2(E) cos[η0(E) − η2(E)]

|W0(E)|2 + 2|W2(E)|2 .

(14)
From these expressions, at each energy E, the measured

σtotal(E) and β(E) from XUV photoionization alone would
not allow the determination of the four parameters needed to
characterize the complex dipole matrix elements in Eqs. (9)
and (10). Thus additional measurements would be needed.
Like streaking experiments for electrons along the z axis,
would the angular distributions of photoelectrons from the
nonlinear IR-dressed XUV ionization allow us to obtain the
other parameters needed such that the whole electron wave
packet along any directions can be obtained?

The amplitude and phase of Eq. (9) are shown in Fig. 1
for the case of mi = 0. Both exhibit strong angular depen-
dence. For the case of mi = ±1, according to Eq. (10), there
is no angular dependence in the dipole phase. This would
correspond to the simplest case where the wavefront of the
electron wave packet does not depend on the scattering an-
gles. To isolate such a simple case, the electron has to be
ionized from a specific initial mi = ±1. The results in Fig. 1
are obtained from solving the time-independent Schródinger

FIG. 1. Angular dependence of single-photon dipole transition
amplitude (a) and phase (b), d0(E, θk ), for the case of ionization
from the mi = 0 initial 3p state of Ar. They are calculated from
Eq. (9) where the radial matrix element and phase for the two partial
waves L = 0 and 2 are obtained from solving the time-independent
Schödinger equation.

equation. They are the angular-dependent dipole amplitude
and phase for photoelectrons emitted after ionization by an
XUV pulse. In this article we ask what experiments should be
done in order to obtain the results shown in Fig. 1.

In streaking experiments, the photoionization process hap-
pens in a dressing IR field. Because of the IR field, the electron
spectra will be modified compared to the laser-free case.
Assume both the XUV and IR are polarized along the z axis,
and the peak of the XUV pulse is delayed by τ with respect
to the IR peak field. We can model the angular-dependent
streaking spectrogram by SFA:

S(p, τ ) = 1

3

∑
m=−1,0,1

∣∣∣∣
∫ ∞

−∞
EXUV(t − τ )dm[k(t )]

× e−i
∫ ∞
t

(pA(t ′ ) cos θ+ 1
2 A2(t ′ ))dt ′ei( p2

2 +Ip )t dt

∣∣∣∣
2

. (15)

In Eq. (15), A(t ) = ẑA(t ) = −ẑ
∫ t

−∞ EIR(t ′)dt ′ is the vector
potential of the IR field. The measured photoelectron momen-
tum vector is p. In spherical coordinates it can be expressed by
(p, θ, ϕ), and the measured electron energy Ep = p2

2 . Equa-
tion (15) includes the transition dipoles dm[k] = dm(E =
k2/2, k̂) which are given by Eqs. (9) and (10). However, in
the situation of XUV+IR streaking, k is a time-dependent
variable,

k(t ) = p + A(t ). (16)

Using spherical coordinates, ϕk = ϕ, and

k(t ) =
√

p2 + A2(t ) + 2pA(t ) cos θ, (17)

θk (t ) = arctan
p sin θ

p cos θ + A(t )
. (18)

Due to the streaking effect, the photoelectron observed at
an angle θ involves single-photon ionization toward a range
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of angles θk , as demonstrated by Eq. (18). In addition, the
streaking experiment is most likely carried out without the
selection of mi of the 3p electron, thus the dipole phase
of the different initial mi also occurs in Eq. (15) for each
streaking spectra in a given direction. To extract the dipole
phase at a given direction away from the polarization axis,
the whole angular streaking spectra over the whole angular
range of the photoelectron and the spectral range of the XUV
pulse have to be analyzed at the same time. To retrieve so
many parameters at the same time clearly looks impossible.
Simplification occurs only for θ = 0◦, then θk = 0◦ or 180◦.
In that special case, only the mi = 0 channel contributes to the
electron spectrum. For θ = 0◦, for example,

S(p, τ ) =
∣∣∣∣
∫ ∞

−∞
EXUV(t − τ )d0[k(t )]

× e−i
∫ ∞
t

(pA(t ′ )+ 1
2 A2(t ′ ))dt ′ei( p2

2 +Ip )t dt

∣∣∣∣
2

. (19)

III. METHOD OF RETRIEVING ANGULAR ATOMIC
DIPOLE PHASE

The goal of this work is to retrieve the angle-resolved
transition dipole. In view of the complications just discussed,
an alternative method is proposed here. According to Eq. (9)
once we have obtained W0, W2, η0, and η2, the dipole ampli-
tude in any direction can be calculated. One possible approach
is to retrieve these four functions over the spectral bandwidth
of the XUV pulse from the IR-dressed streaking spectra over
the whole angular range. This is still too complicated as well
since there are too many parameters to be retrieved. Instead,
here we propose a two-step retrieving process. First, from the
IR-free photoelectron angular distributions we have σtotal(E)
and β(E) within the bandwidth of the XUV pulse. From
Eqs. (13) and (14) we can derive

3πσtotal(E)[1 − β(E)]

= |W0(E)|2 − 4W0(E)W2(E) cos[η0(E) − η2(E)]. (20)

The left-hand side of Eq. (20) is a known function, whereas
the four unknown functions on the right-hand side can be
combined into two, W0(E) and G(E) = W2(E) cos[η0(E) −
η2(E)]. We expand the two unknowns by B-spline functions:

W0(E) =
∑

i

aiB
k
i (E), (21)

G(E) =
∑

j

bjB
k
j (E). (22)

The unknown coefficients {ai, bj } are optimized by genetic
algorithm (GA) in order to obtain the best fit to the left-hand
side of Eq. (20). From the retrieved W0(E), one can calculate
W2(E) from Eq. (13). Then from the retrieved G(E) one can
deduce the phase shift difference η0(E) − η2(E).

Figures 2(a) and 2(b) are the input σtotal and β parameter for
Ar atoms. Mathematically, Eq. (20) is a simple quadratic func-
tion of the unknowns, therefore it only takes a few seconds for
our GA solver to converge. After about 18 000 generations we
obtained W0(E) and G(E), then from Eq. (14), we also obtain
the phase difference η0 − η2. Figures 2(c) and 2(d) compare

FIG. 2. Retrieval of the radial matrix elements from IR-free
photoelectron angular distributions. (a) Input total cross section σtotal.
(b) Input β parameter. (c) Input and retrieved radial matrix element
W0. (d) The same but for W2. The phase difference between the two
partial waves vs photon energy from the input and from the retrieval
also agree well (not shown).

the input and retrieved radial matrix elements W0 and W2.
The input and retrieved data match very well. The retrieved
phase difference η0 − η2 also agrees well with the input data.
Thus if we can retrieve one of the phases within the spectral
range, we would have retrieved all the parameters. We can
obtain this unknown from the spectrogram for photoelectrons
along the polarization axis, which would give the phase of
the atomic transition dipole along that direction. Once this
phase is retrieved, using the known W0, W2, and η0 − η2, from
Eq. (9), all the four parameters W0, W2, η0, and η2 as functions
of E are obtained. In retrieving the atomic dipole phase,
we employed the PROBP method [30,31] which is superior
to FROG-CRAB since the latter employs central momentum
approximation.

IV. RESULTS

A. Test with high energy spectrogram generated from SFA

Since the XUV is weak, the IR-free photoelectron angular
distributions can be calculated exactly by first-order perturba-
tion theory. In the IR-dressed XUV photoionization, we first
assume that the photoelectron spectrogram along the polariza-
tion direction can be calculated using the SFA equation. The
SFA approximation works reasonably well for XUV photon
energy at and above about 60 eV. Here we choose three
different XUV pulses. One is a transform-limited (TL) pulse
and the other two are chirped pulses. They share the same
spectral amplitude which takes a Gaussian form with a central
photon energy of 60 eV and a full width at half maximum
(FWHM) bandwidth of 11.5 eV. The TL pulse has a FWHM
duration of 160 as and a peak intensity of 1012 W/cm2. The
FWHM duration of the two chirped pulses are 280 as and 400
as, respectively. The IR field is 800 nm in wavelength, cosine-
squared envelope, 4.4 fs in FWHM duration, 1012 W/cm2 in
peak intensity, and the carrier-envelope phase (CEP) is zero.
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FIG. 3. Test of the accuracy of the retrieved partial wave phase
shift (a) η0 and (b) η2. The streaking spectra are generated using the
SFA with the known input parameters. Three XUV pulses that have
the same spectral amplitude but different spectral phases are used
to generate the Ar spectrograms. The two phases retrieved from the
three spectrograms are compared to the input phases. Larger-chirp
pulses give larger errors, but the error is very small, about 0.01
radians or less. Parameters used (see text). The center energy of the
XUV pulse is at 60 eV.

The three XUV pulses should give the same IR-free pho-
toelectron angular distributions since in first-order theory,
the spectral phase of the XUV does not affect the cross
sections. In the presence of an IR field, the spectrograms for
the three IR-dressed XUV pulses are different; the retrieved
phase shifts η0 and η2 can be different. Figure 3 shows the
comparison of the retrieved phase shifts with the input ones.
For the TL input pulse, the two phase shifts η0 and η2 can
be accurately extracted, as they lie on top of the input results.
For the 280-as chirped pulse, the error in the retrieved phase
shifts is about 0.01 radians or less and for the 400-as chirped
pulse, the error is about 0.025 radians or less. Such errors
originate from the iterative retrieval processes. Such small
errors in the input and output results are tolerable. If one
accounts for the errors in the signal, the errors seen here will
be easily surpassed. Based on these results, we conclude that
the input results can be retrieved accurately with the methods
and algorithms presented here.

We should mention here, in the first retrieval step we obtain
W0(E) and G(E) from the parameter fitting. In the calculation
of W2 from W0 using Eq. (13) we need to take the square
root, thus, there are actually two branches of solutions—one
with positive sign and the other with negative sign. Both
branches should be considered in the second step. We did two
separate optimizations in the retrieval of η0; each corresponds
to one choice of W2. The solution that can best fit the input
IR-dressed spectrogram is chosen to be our final retrieved
result.

B. Test with high energy spectrogram generated from TDSE

Next we use the spectrogram simulated by solving the
TDSE as the input data. Since the retrieval is based on the
SFA model, larger errors than the previous simulations are
expected. Here we use the same TL XUV pulse as in Fig. 3
(with a central photon energy of 60 eV) to generate the
TDSE data. The retrieved η0 and η2 are plotted in Fig. 4

FIG. 4. The same as Fig. 3 but the spectrogram was generated
from the solution of the TDSE. Only un-chirped TL pulse is used.
Larger error of about 0.04 radians or less can be seen but the error is
quite acceptable.

to compare with the input ones. Even using the TDSE data
as the input, the error of phase shift retrieval is quite small
(within 0.05 radians). This shows that both η0 and η2 can
be accurately retrieved when using XUV pulses with central
photon energy of about 60 eV for the Ar target investigated
here if the streaking spectra were taken from the experiment
which should be closer to the TDSE spectra.

C. Test with low-energy spectrogram generated from TDSE

In yet another example, we use a TL XUV pulse whose
bandwidth is the same as before but its central photon energy
is reduced to 40 eV. From this new input IR-dressed spec-
trogram that is simulated by TDSE, we repeat our method
to retrieve η0 and η2. The results are plotted in Fig. 5. In
this example, the error in the retrieved phase is about 0.25
to 0.5 radians. This is not surprising since it has been well
established that the SFA model does not accurately describe
low-energy photoelectrons (16–34 eV in this example). Thus
one has to conclude that it is not possible to accurately retrieve
the partial wave phase shifts, or equivalently, the phase of
low energy photoelectrons. This means that the electron wave
packet generated by the XUV one-photon ionization cannot
be accurately reconstructed.

D. Photoionization dipole phase or photoionization time delay?

Using the retrieved W0, W2, η0, and η2, we can calculate
the angle-dependent transition dipole phases using Eqs. (9)
and (10). Since the dipole phase in Eq. (10) for mi = ±1
is independent of θk , we only show in Fig. 6 the input and
retrieved dipole phase for mi = 0 on the plane of the emission
angle θk and the photon energy within the bandwidth of the
XUV pulse. The center of the photon energy is 40 eV, thus
this example is for low-energy photoelectrons.

The phase plots in Fig. 6, together with the photoelectron
angular distribution would give the maximal information in
an XUV photoionization experiment. Such information would
allow us to reconstruct the time-dependent electron wave
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FIG. 5. Retrieval of partial wave phase shift (a) η0 and (b) η2

from a TDSE-simulated Ar spectrogram using a transform-limited
XUV pulse. The central photon energy in this example is 40 eV.
Much larger errors of about 0.5 radians or less in the retrieved phase
shifts can be seen. This example shows that accurate phase shifts
cannot be retrieved for low-energy photoelectrons. The failure is due
to the strong field approximation used in the phase retrieval algorithm
which is not valid for low-energy electrons.

packet generated by the XUV pulse (see below). Consider
Fig. 6(a); the dipole phase calculated using Eq. (9) with W0,

W2, η0, and η2 obtained from solving the time-independent
Schrödinger equation clearly differs from Fig. 6(b) where
the dipole phase is obtained using the retrieved radial matrix
elements and partial wave phase shifts (see Fig. 5). On the
other hand, one can see some resemblance between Figs. 6(a)
and 6(b). It means that the error in SFA declines gradually
as the photoelectron energy is increased, as demonstrated by
better agreement of the two graphs at higher photon energy.
The same set of data can also be compared in terms of Wigner
group delay [see Fig. 7(a) vs Fig. 7(b)] by taking the derivative
of the phase in Fig. 6(b) at each angle with respect to energy.
Again, the two figures in Figs. 7(a) and 7(b) do not agree, but
a certain similarity can be observed. The dark blue regions in
Figs. 7(a) and 7(b) are due to the Cooper minimum in the pho-
toionization cross section of Ar 3p. Cooper minimum occurs
when the cross section goes through a minimum in a small
energy range. In quantum physics, it amounts to the phase of
the electron wave undergoing a rapid change of close to π in
this narrow energy region, or equivalently the derivative of the
phase with respect to energy is large (in absolute value). Thus
Cooper minimum occurs in the energy and angular region
where the group delay is large. Figures 7(a) and 7(b) show
that the group delay is large only for emission angles less than
about 40◦, which is consistent with the minima in the angular
distributions shown in Fig. 1(a). For larger angles, there is
no large group delay and there is no Cooper minimum in the
photoelectron spectra.

(a)

(b) (d) (f)

(c) (e)

FIG. 6. Comparison of the retrieved and the input transition dipole phase arg[d0(E, θk )] (unit, radian) for mi = 0 as functions of both the
photon energy E + Ip and the emission angle θk . The central photon energy is 40 eV in (a) and (b) and 60 eV in (c)–(f). (a) and (c) The
input data; (b) and (d) the reconstructed dipole phase by the retrieved W0, W2, η0, and η2, where η0 and η2 are obtained from TDSE-simulated
spectrograms using transform-limited XUV pulses with the duration of 160 as (see Figs. 4 and 5). (e) and (f) The reconstructed dipole phase
where η0 and η2 are obtained from SFA-simulated spectrograms using two chirped XUV pulses with the duration of (e) 280 as and (f) 400 as,
respectively; also see Fig. 3. Accurate retrieval of the phase over the whole range of electron energies and angles can be seen except in (b).
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(b)

FIG. 7. Comparison of the retrieved and the input Wigner group delay τW (E, θk ) = d

dE
arg[d0(E, θk )] (unit, as) for mi = 0. These graphs

are identical to those in Fig. 6 except that the Wigner delays are shown here.

In Figs. 6(c)–6(f), we compare the dipole phase results
for central photon energy at 60 eV. The input dipole phases
in two dimensions are shown in Fig. 6(c). In Fig. 6(d), the
retrieved dipole phases are obtained from streaking spectra
calculated from solving the TDSE and the XUV is transform-
limited (160 as). As expected, the agreement with the input
data is excellent. For the retrieved dipole phases shown in
Figs. 6(e) and 6(f), the streaking spectra were generated
using the SFA model with chirped XUV pulses of 280 as
and 400 as, respectively. For both chirped pulses, the dipole
phases [Figs. 6(e) and 6(f)] or the group delays [Figs. 7(e)
and 7(f)] retrieved using the methods used here are in good
agreement with the input. Thus we can conclude that the
XUV photoionization dipole phase can be retrieved accu-
rately if the central photon energy is about 60 eV and
higher.

V. EXTRACTING TRANSITION DIPOLE PHASE OR
PHOTOIONIZATION TIME DELAY FROM THE

STREAKING SPECTRA?

The results from Fig. 6 show that the full photoelectron
wave packet generated by an XUV single attosecond pulse
at all the angles can be accurately retrieved with the help of
an IR pulse if photon energy is near 60 eV and above. With
the amplitude and phase accurately retrieved over the whole
bandwidth and momentum directions, the time dependence of
the whole electron wave packet in the coordinate space can be

reconstructed from∣∣�mi,k̂
(r, t )

〉 =
∫

dEẼXUV(E + Ip )e−iEtdmi
(E, k̂)|Ek̂〉.

(23)
Note that the stationary continuum state with the given

electron energy E and propagation direction k̂ is given by
the wave function |Ek̂〉, Eq. 4, which is the eigenstate of
the field-free Hamiltonian. This is the electron wave packet
associated with ionization from the 3p shell with a particular
magnetic quantum number. For the photoelectron ionized
from each initial state, 3p0, 3p−1, or 3p+1, each has its
own coherent wave packet, and each wave packet has its
own angular dependence. There is no meaning to add these
three wave packets directly since they are associated with
different degenerate ionic cores, corresponding to different
channels. If the magnetic quantum number is not determined
experimentally, then the total streaking spectra is given by
an expression like Eq. (15). The dipole phase (or the Wigner
delay) cannot be directly retrieved from the streaking spectra
except along the z direction where only the 3p0 channel is
ionized.

Since Wigner delay is the derivative of the phase with
respect to the electron energy, if one extracts the Wigner delay
at each energy point within the spectral bandwidth, then the
use of the dipole phase or Wigner delay are equivalent as one
can be obtained from other, up to an unimportant constant
phase. However, from the analysis in Sec. II, it shows that
there is no advantage of replacing the phase by the group
delay. For example, in the model Ar atom used here, the
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electron wave packets are written naturally in terms of phases
and amplitudes. The wave packet in coordinate space, as given
in Eq. (23), is also expressed in terms of phases. In this regard,
it is important to note that an averaged group delay for the
three wave packets associated with the three mi’s would have
no meaning since the Wigner group delay is defined only with
respect to the wave packet, not with respect to the electron
density.

While it may be tempting to generalize the present wave-
packet retrieval to a many-electron system, it is hard to see
how realistic this can be done. In the description of photoion-
ization processes in the energy domain for a many-electron
system, each channel is no longer described by a partial wave
phase shift, but rather by a complex scattering amplitude of
the S matrix. In the energy domain, each complex amplitude
is given by dmi,j (E, k̂) where j is the index for the channel.
It would be a monumental task to extract these complex scat-
tering amplitudes from experimental spectra since it would
take multiparameter coincidence measurements to separate
channels.

Most of the present-day experiments with single attosec-
ond pulses either measure IR-dressed photoelectron spectra
like the streaking spectra discussed here or with attosecond
transient absorption spectroscopy (ATAS). In the former, the
majority of experiments have reported photoionization time
delays for atoms, molecules, solids, and liquids (see reviews
[38]). In these experiments, usually a single group delay
difference between two species or between two channels of
the same species at the center of the XUV photon energy
was reported. To obtain this single group delay difference,
the center of mass of the electron spectra is evaluated at each
XUV-IR delay τ . By comparing the time delay τj where the
center of mass of the streaking spectra for channel j peaks, a
single photoionization time delay difference τ12 = τ1-τ2 was
obtained from the experimental spectra directly. This simple
procedure eliminates the tedious phase retrieval steps like the
one we presented here.

The procedure described above for extracting the delay dif-
ference from the measured streaking spectra is quite straight-
forward, but what is the meaning of this photoionization
delay difference? In the best-case scenario this difference is
the group delay difference of the two electron wave packets
associated with the two channels. However, a group delay
of a wave packet at a given photon energy point gives no
information about the wave packet. This amounts to speci-
fying the group delay at a single point in one of the two-
dimensional frames of Fig. 7(a) along the line where the angle
θk = 0. More seriously, information is carried by the whole
wave packet, not by a part or one energy point of the wave

packet. In this article we stress that the whole electron wave
packet emerging from the photoionization of our model atom
is represented by Eq. (23). As this wave packet propagates
in “time,” its wave front evolves in the radial as well as the
angular dimensions. “Time” in this picture is a parameter, not
a measured quantity.

Before closing this section, we want to point out that
electron streaking spectra ejected at different angles have been
reported in experiments using APT+IR pulses [35] using
the RABITT method. Since in APT spectra the energy gap
between two neighboring energy points is twice the IR photon
energy and the phase entering the sidebands is the phase of
the two-photon transition matrix element, it does not give the
transition dipole phase by the XUV pulse directly.

VI. DISCUSSION AND CONCLUSIONS

In this article we proposed a method to obtain the angular-
dependent transition dipole phase in the elementary single
photoionization of an atom by an isolated attosecond XUV
pulse. While the dipole phase has been studied using the
streaking spectra generated by IR-dressed XUV photoioniza-
tion spectrogram, the method has been limited to the electron
wave packet along the direction of the polarization axis only.
To obtain dipole phases for the whole electron wave packet,
a two-step method was proposed. It relies on retrieving the
partial wave radial dipole matrix elements and the associated
scattering phases. Based on elementary quantum theory, we
showed that these parameters can be fully retrieved from the
IR-free photoionization angular distributions, together with
the IR-dressed photoelectron streaking spectra along the po-
larization axis. Taking a model Ar atom as an example, we
also showed that the dipole phase can be obtained accurately
only when the XUV photon energy is about 60 eV and above.
Since the phase retrieval method employs the strong field
approximation which is invalid for low-energy photoelectron
streaking, the spectral phases for low-energy electrons cannot
be retrieved.
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