Summary of potential Scattering Theory A. Scattering by a Short-Range Potential

(i) Plane Wave
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(ii) Partial Wave Expansion
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(iii) Short-Range Potential is for V (r) —— 0 faster than 1/r?
Two independent solutions in the region V(r) =0
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Scattering Wave with momentum k in a Short-Range Potential
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(v) K, T and S “matrices”
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Note: different partial waves will interfere in the differential cross sections. They do not interfere for the total cross
sections.
B. Scattering by a Long-Range Potential

(i) Coulomb Waves can be found in textbooks (Schiff p.138-). Let £ =r — z, n = r + z, then the Coulomb function
with fixed momentum k is given by
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where the two charges are given by Z and Z’, and v is the velocity,
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is the confluent hypergeometric function.
Asymptotic form of the Coulomb function (Schiff eq. (21.a))
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It is expressed as an incident wave and a scattered wave. The Coulomb scattering amplitude is
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which gives the same differential cross sections as the Rutherford scattering cross section derived classically. The C
depends on the normalization convention.

(ii) Partial Wave Expansion of Coulomb functions
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(iii) Regular and Irregular Coulomb Wave Functions Fj(kr) and G;(kr) where the irregular Coulomb function is
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Both are solutions of Schrédinger radial equation for a Coulomb potential.



(iv) Scattering Wave in a Modified Coulomb Potential

V(r) = Ve(r) + Vi(r)
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Thus the asymptotic form of \III is
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Note that sum over [ can be truncated since §; involves the short-range potential only.
(v) Scattering Waves Describing Ionization (Incoming Scattering Waves)
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Recall
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