notes-8. Harmonic oscillator
8-1. The wavefunction
  This is a very important problem in QM that can be solved exactly. I only summarize the essential results here.

            The 1D eigenvalue Schrodinger equation is 
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   Write 
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, the eigensolutions can be expressed as
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where Hn(x) is the Hermite polynomial, and the eigenvalues are
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the frequency 
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 of course.  The normalized wavefunction is
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Go to  http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc6.html to take a look at the probability density between classical and quantum harmonic oscillator. More details can be found in any quantum mechanics textbook.

8.2. Operator method – number operator
   From the commutation relation 
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   one can can show 
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. For the Hamiltonian 
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, it can be written as                                  
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  Easily proved identities:
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     From (4)   
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     One obtains  
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     Thus if 
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is the eigenstate of H, 
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 Since the Hamiltonian is positive definite, there is a lowest state 
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 from equation (3).

    Clearly from eq. (5),  
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 is a state with eigenvalue 
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 The n-th eigenstate then is 
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  where the normalization constant 
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 can be obtained after some manipulation. 
   Note that 
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obtained this way refers nothing to the configuration space wavefunction 
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 in terms of the Dirac ket. The abstract eigenstate 
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, when expressed in coordinate space has the representation 
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 In other words, wavefunction is a representation of the eigenstate in the coordinate space.  

  Following the definition of the operators given here, all the properties of the harmonic oscillators can be obtained. The Hilbert space consisting of {|n>} is in the energy represenation since 
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 The wavefunction 
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 is in the coordinate space representation. In this respect, one treats the x and p in the Hamiltonian as operators, and in the energy representation, each is represented by a matrix in the basis of |n>.
Homework-- exercise on operator methods
From the commutation relations involving A and A+, do the following problems.
8.1.   Follow the definitions in (1) and (2), prove that 
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8.2. From 
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, show that 
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8.3. From the result of 8.2, show that one can write 
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, i.e., representing 
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8.4. Calculate 
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[Hint: calculate 
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 from it , and then use the definition of A to find the matrix elements of x and of p. 
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