Notes-14. The Hydrogen atom

So far we have considered many model problems. In this section, we will look at the real atomic hydrogen. 

(1) Schrodinger theory
   model: An electron in the Coulomb field of the nucleus, say proton. Treating the nucleus as a point charge.
    Need to use the reduced mass to write it down as an effective one-body problem. Thus the energy spectrum of atomic hydrogen and deuterium are slightly different, see problem 14-1. 

        According to this model, the Hamiltonian is given by
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where Z=1 is the charge of the nucleus. The wavefunction of the electron is 
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where 
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are the usual quantum numbers. The binding energy depends only on n, as you all know by now. In this approximation, a state is called like 1s, 2p, 4d. .. etc. The degeneracy is (
[image: image4.wmf]).

1

2

+

l


 ( A word of caution. There is another term, called mass polarization, due to the fact that the electron-nucleus radius is not one of the Jacobic coordinates. This term is much smaller.)

(2) Including the spin of the electron
      An electron has an intrinsic spin S, with the magnetic dipole moment given by 
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, where g=2 approximately. This introduces a new interaction energy, called spin-orbit interaction. This term can be understood classically. The nucleus exerts an electric field on the electron. In the rest frame of the electron, part of this electric field is seen as the magnetic field (following the Lorentz transformation in special relativity and the Maxwell equations). This spin-orbit interaction can be expressed as
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where 
[image: image7.wmf])

(

r

f

 is the potential energy seen by the electron at position r. For hydrogen atom, 
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  where m is the mass of the electron.

      Including the spin-orbit interaction, the Hamiltonian is 
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. Clearly for this Hamiltonian, the orbital angular momentum is no longer a good quantum number. The total angular momentum is  
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, and form eigenstates of total angular momentum. The good quantum numbers now are 
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 Thus the eigenstate is now designated as 
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 , 2p1/2, 2p3/2, 3d3/2, etc. The subscript refers to the j- quantum number.  

Note that the spin-orbit interaction only couples states of   different magnetic components of the 
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We discussed previously how to construct angular momentum state of 
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 can be constructed using the C-G coefficients. [Review homework 6-2(a)]  In this case the wavefunction of the electron is written as 
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The eigenvalue of  
[image: image21.wmf]SO

H

H

H

+

=

0

 is obtained by treating HSO using the first-order  perturbation theory, with the zeroth-order wavefunction of (14.5). Clearly the radial integral is 
[image: image22.wmf]>

<

l

l

n

n

R

r

R

|

/

1

|

3

 and the angular integral is proportional 
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.  The last integral is evaluated by using
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By collecting all the coefficients you can calculate the perturbation energy.

 Note that the separation between different J's for a fixed n and 
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 is called the fine structure.

(3) Relativisitc correction to the kinetic energy
    The kinetic energy of an electron is given in the relativistic theory by
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   The p4 term enters as a correction to the relativistic mass. This term can be treated as perturbation too.

(4) Dirac Theory of atomic hydrogen
     The relativistic version of atomic hydrogen is called Dirac theory. Dirac theory is first order in time and coordinates. It includes the relativistic mass effect and spin directly in the theory.  Thus everything from (1)-(3) above are included. 

    Dirac theory introduces the so-called large component and small component in the radial wavefunction. Each wavefunction is a 4-component spinor. Dirac equation gives positive energy state and negative energy states. The negative energy state corresponds to a positron.   In this case, the ground state of the atomic hydrogen is not the ground state, since the negative energy states are lower in energy. These negative energy states are considered to be normally occupied. When a filled negative energy state is excited, a hole is created and this hole is the positron observed.
(5) The Quantum Electrodynamics (QED)

     The interaction between two point charges is given by 1/r classically. The electromagnetic field can be quantized. Each EM field is considered to be a photon field which can be described similar to that of a harmonic oscillator in each dimension. We will talk about this quantization in lectures later.

    The photon can be absorbed or emitted repeatedly. This constant emission and absorption introduces QED effect of atomic energy levels, not even considered in the Dirac theory. In QED, a hydrogen atom is not an isolated system, but rather is constantly interacting with the the vacuum field. The coupling of electron and photon cannot be neglected.

According to the Dirac theory, the energy levels of 2s1/2 and 2p1/2 are still degenerate. Under QED, they are separated. The separated is called Lamb shift. 

From the NIST link, http://physics.nist.gov/cgi-bin/HDEL/tables.sh, this separation is 0.035 cm-1, while the fine structure in 2p has the separation of 0.36 cm-1.
(6) The hyperfine structure of atomic hydrogen
     There are additional contributions from the nucleus:
(a) First the nucleus itself has a spin, with angular momentum I
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 and a nuclear magnetic dipole moment. This nuclear dipole produces a magnetic field at the electron, thus one has dipole-dipole interaction term.  -- magnetic dipole term
(b) The nucleus is not a point particle. It has a shape in general, especially for large nucleus. In this case the nucleus can be treated as a electric multipole, and the gradient of the electric field from the quadrupole moment of the nucleus can contribute to the additional interaction term.  -- electric quadrupole term
Both (a) and (b) contribute to the hyperfine structure.  Since the magnetic dipole moment of the nucleus is about at least 1000 times smaller (due to the mass), the hyperfine structure is very small. 

  The total angular momentum of an atom is then given by
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.   For atomic hydrogen in the ground state, I=1/2, j=1/2, thus F=0, 1. The energy separation between F=0 and F=1 in atomic hydrogen has a wavelength of 21 cm. This is the famous 21cm radio wave that is used to map the sky.

(7) The anomalous Zeeman effect
    For a hydrogen atom in a magnetic effect, an additional Hamiltonian has to be included,
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The total Hamiltonian in this case is H=H0+HSO+HB. To calculate the energy level shift, we note that for small B field where HSO>>HB, we can treat HB as perturbation. The unperturbed Hamiltonian is H0+HSO where the wavefunction is given by (14.5). The magnetic effect is to split each fine-structure level into (2j+1)-levels.
When the magnetic field becomes large, or HB>>HSO. The eigenstates of H0+HB clearly are designated by 
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 and the unperturbed wavefunction is 
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. Using these functions, the spin-orbit interaction term is to be treated as perturbation.

To fully appreciated the coupling scheme and the corresponding energy levels, work on problem 14.3.
===========================================================
Homework 14.

14.1. Show that the binding energy for the 1s ground state of atomic hydrogen is 3.7 meV above the 1s ground state of the deuterium atom. (Use the equations from any textbook to work out the number.)

14.2. The separation between j=1/2 and j=3/2 levels of 2p state in atomic hydrogen.

We have worked out the spin-orbit interaction term in the lecture notes. Now we want to do a real calculation. For simplicity, we will use 
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 again, so-called atomic units. In this unit, 
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The energy separation you get out of this calculation is in atomic units, or 27.21 eV. Express the separation in units of cm-1. Note that 1 eV=8065.48 cm-1.

Now go to the data given by NIST, see http://physics.nist.gov/cgi-bin/HDEL/tables.sh
to find out what is the difference in energies between these two states. 

Note: In atomic units, the speed of light  c=
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 is the fine structure constant.

14.3. Do not work out the numbers, just do the "counting".

(a) Hydrogen atom in a weak magnetic field

      Draw the energy levels of the 2p1/2 and 2p3/2 states of atomic hydrogen using the data from problem 14.3. These two states are the eigenstates of H0+HSO.

   In a weak magnetic field HB, how each level is splitted? Make a sketch indicating all the splitted levels.
(b) Hydrogen atom in a strong magnetic field

    Now consider that HB is very large, sketch the energy levels of H0+HB for the 2p state. Identify all the levels and list their quantum numbers. Are there any of them degenerate in energy?

 Now you want to include the spin-orbit interaction. Identify whether you should use nondegnerate or degenerate perturbation theory for all these levels.

14.4.  Advanced part of problem 14.3. 

   What is the energy separation of  the energy levels of the 2p1/2 and 2p3/2 states. (from problem 14.2) Calculate the value of B where the method of  problem 14.3(a) will fail. 

[hint: when the perturbation due to HB is comparable to the separation of  2p1/2 and 2p3/2 states, the method fails.] 
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