notes-12. Time-dependent Perturbation theory
 Consider a Hamiltonian
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where H'(t) is a small perturbation and it vanishes at large postive and negative time t.

     Let 
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We can expand the solution 
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Substitute (3) into the time-dependent Schrodinger equation
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and projecting out the components we get 
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where the transition frequency 
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Equation (5) is a set of coupled equations that have to solved with known initial conditions. Up to this point, eq. (5) is exact if a complete set is included. There are a few situations that the equation can be simplified.

(1) When H'(t) is small-- this is the perturbation regime which is to be treated here

(2) There are only two states are strongly coupled by H'. In this case the two coupled equations can be solved more or less analytically. The so-called Rabi problems for such two-state problems have many applications.

(3) If the basis expansion in (5) can be truncated to a reasonable number, such time-dependent calculations are called coupled-channel calculations or close-coupling method.

12.1. First-order perturbation theory

If the system is in an initial state |0>, and H' is small, we can neglect all the other states on the right-hand side of (5). Furthermore, we assume that 
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 at all the time, such that  (5) is simplified to 

                                       
[image: image9.wmf]t

i

m

m

m

e

V

dt

dc

i

0

0

w

-

=

h

  where  
[image: image10.wmf]>

=<

0

|

'

|

0

H

m

V

m

         (7)

Eq.(7) can be integrated to obtain
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The probability of making the transition to state |m> at time t  is 
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 12.2. Constant perturbation except for turning on and off
   If the perturbation is constant from t'=0 to t, then equation (8) can be integrated to 
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and the probability (9) is given by
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where 
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The function F(t,
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, with a width inversely proportional to t. For large t, the width is very small. If we integrate (11) over a narrow range of 
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That is, in general, we have to sum over states m's which have energies within 
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12.3. Fermi Golden Rule

   If the final state m is a group of states with energy given by the interval 
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, we want to sum over all the transitions to the states within this narrow interval.

  The probabiltiy is obtained by integratin (11) over the energy interval, 
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For small energy range, we can pull out both the |Vm0|2 and  
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Define the transition rate  W   by
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This is called the famous Fermi's Golden Rule. 
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