Notes 11-- Time independent Perturbation theory
 There are very few quantum mechanical systems where the Schrodinger equation can be solved analytically. Thus approximate solutions are always call for.

 If the total Hamiltonian can be expressed as 
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where H0 is much larger than the perturbation W. We assume that the complete set of solutions {
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 of  H0 are known, i.e., 
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For the perturbation theroy we  need to separate the nondegenerate from the degenerate cases.

1. Nondegnerate perturbation theory

   Let us write
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and that the solution 
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 can be expanded in powers in 
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Without writing it down explicitly, we are looking for the perturbation from a particular eigenstate of H0.

Pluging in these expansions into  
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, and then collect all the terms of the same powers of 
[image: image9.wmf],

l

  we obtain 
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Practically nobody goes beyond the second order. You will  know why soon.

Since {
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 forms a complete set, it is possible to expand
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For simplicity, assume that the state we are perturbing from is 
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,  plug (6) into (4),
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Take the dot product of (7) with 
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, we obtain 

                             
[image: image18.wmf]>

=<

i

i

u

W

u

E

|

|

1

                                (8)

Take the dot product with 
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. From the orthogonality of the basis functions, we obtain             
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Thus (8) shows the perturbation energy and (9) with (6) gives the first-order perturbation to the wavefunction.

To obtain the 2nd-order perturbation in energy, we start from (5), taking the diagonal term, 
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The perturbation to the wavefunction can be calculated also but we will not do it here.

In the spirit of perturbation theory, the second-order perturbation term is calculated only when the first-order perturbation term is zero.

2. Degenerate Perturbation Theory

  If the initial state is degenerate, then even a small perturbation can mix up the states. Suppose 
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, i=1,..N, is the set of degenerate states of H0, then upon the small perturbation by W, the new eigenstates of H=H0+W  can be expanded in  
[image: image25.wmf]}

{

i

u
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Substitute (11) into   
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, and then project out each 
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 space, a set of algebraic equations is obtained
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This is an eigenvalue problem and new eigen-energies can be calculated from solving (12).

3. Applications

  There will be a few exercises below for you to practice the application of the perturbation theory. What you need to do is to identify H0 for the given problem, find out it eigensolutions and then use the relevant expressions to calculate the matrix elements.
Learn to identify matrix elements which will vanish by some symmetry arguments.

Homework problems

 In these exercises you need to identify and write down the eigensolutions of H0 and find out the corrections to the energies, using either first- or 2nd-order nondegenerate perturbation theory, or the degenerate perturbation theory. I do not require you to calculate the matrix elements but identify those which vanish via symmetry inspection.
11.1. A particle of mass m in a harmonic oscillator potential also has experienced an anharmonic term W=ax3. Find out the correction of this perturbation to the ground state energy of the harmonic oscillator.
11.2. A two-dimensional harmonic oscillator has the potential V(x,y)=
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 has an additionaly small coupling term W(x,y)=axy. Calculate the correction to the energies of the ground state, and the first-excited states.  Write down the general expressions for the calculation of the energies and express the matrix elements in terms of integrals. 

11.3. Work out this problem to the end.

    For an infinite square well potential between x=-a and x=+a, the potential is zero. Outside the well, the potential is infinite. Suppose a small perturbation is added, such that W(x)=V0 for x between (-a/2, a/2) and zero elsewhere. Calculate the perturbation to the ground state energy and the first-order correction to the ground state wavefunction.
11.4. This is a standard textbook problem.

 Consider the hydrogen atom and assume that proton is a uniformly charged sphere of radius R so that the potential is given by
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Calculate the shift for the ground state only. Use the wavefunction from the textbooks.
Hint: You may want to use 
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in the calculations so the equations look simpler. The quantities you calculated then are given in atomic units. For the energy, one atomic unit is 27.21 eV, and one unit of length is the bohr radius= 0.528 angstrom. If the radius of the proton is 1.2 fermi (1fm=10-13cm), calculate the actual perturbation energy.
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