notes-5  spin angular momentum
5-1. Communtation relations

      For the orbital angular momentum we realize that it is an operator. In note-4 we derived the commutation relation like 
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  Writing 
[image: image3.wmf]
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 in terms of differential operators, we obtained the eigenfunctions
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In this basis set, the L operator is represented by a matrix.  Thus Lz is a diagonal matrix
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for L=1. Using matrix elements of L+ and L-, one can construct the matrix representations of Lx and Ly.  This will be left as an exercise.

5.2. Spin 

    One can define the spin operator following the commutation relation
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   From the matrix representations of Sx and Sy, by defining 
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 one thus obtains these properties of  Pauli matrices
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Let  
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 be the two eigenstates of 
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z, with eigenvalues +1 and -1, respectively. An arbitrary state in the spin ½  Hilbert space can be written as 
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 where the coefficients are complex numbers. Since 
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 and the overall phase is not important, one can write a general spin ½ state as
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The unit sphere with spherical angles (
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 is called the Bloch sphere. Let the Cartesian  unit vectors for a vector u be given by  
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, then an operator S in the spin space can be expressed in the spinor space
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For the state 
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one can calculate 
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such that the expectation value of 
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This shows that the state 
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 has its spin pointing in the direction with spherical angles (
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That is, the state 
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 in the 2D complex vector space (the Bloch sphere) is isomorphic to the rotation in 3D space. 

  Note that for spin ½ particle, let  
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, the vector 
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 changes sign, i.e., it does not return to its initial state. This is true for any odd half-integer spins. These objects do not have classical analogs. Since physical quantities involve matrix elements of two 
[image: image40.wmf]s

'

c

, this is not a problem.
----------------------------------------------------------------------
Homework #5
5-1.  Calculate the matrix elements of  Sx and Sy and Sz for S=1, 3/2 and 2 in the basis set where Sz is diagonal. 
5-2. Prove that  eq. (2) given indeed is correct.

5-3. An electron with spin ½  in a magnetic field has the Hamiltonian given by 

                                    
[image: image41.wmf]B

mc

e

H

r

r

h

·

=

s

2


     Let B be along the z-direction. What are the two eigenstates and their eigenvalues?

    Suppose that at t=0 the spin is an eigenstate of Sx with eigenvalue +(
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, calculate the spin function at later time t, and the new "direction" of S, ie., calculate 
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5-4.  
 Consider a spin ½ system represented by the normalized state vector


[image: image46.wmf]÷

÷

ø

ö

ç

ç

è

æ

a

a

b

i

e

 

sin

  

cos


What is the probability that a measurement of Sy yields 
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5-5.  

 Consider an agular momentum 1 system, represented by the state vector
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What is the probability that a measurement of Lx yields the value 0?

5-6. 

You are given the Hamiltonian
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Find the eigenvalues of H :   (a) when the angular momentum of the system is 1; (b) when the angular momentum of the system is 2.

Note:  The matrix representations of 
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 for angular momentum 2 are obtainable from (you need to show this first) 
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