note-3.  
3. Time-dependent problem  (S151-
3.1. The basic equation
   The time-dependent Schrodinger eq 
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governs the motion of a single particle in 1D. If the Hamiltonian is time independent, one can write 
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will have a complete set of eigensolutions {
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}. The general time-dependent solution can be expressed as 
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where the coefficients {ci} are determined from the knowledge of wavefunction at time t=0.

3.2. Time evolution operator U(t): The propagator
      Define 
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    For a Hamiltonian that is time-independent explcitly, we can get 
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Note that the complete set {ui} is assumed known.

3.3. Time evolution operator for a free particle 

  For a free particle, the eigenstates were calculated in 1.5. One can write down U(t) in coordinate space 
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  Clearly if the propagation is from t' to t, one replaces t above by (t-t'). A more complete specification of the propagator from (x',t') to (x, t) is written as U(x,t; x',t') and 
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Physical meaning of the propagator:

              Let 
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Thus the propagator is the amplitude for propagating from a point x' at time t' to a point x at time t.  Later we will introduce Green function and that is what it is. 

3.4. Time evolution of a Gaussian wave packet (see S154-155)

    Suppose that we have a wave packet  at t=0 given by
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    For this wave packet, <x>=0 with an uncertainty 
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 That is, this wave packet satisfies 
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    Using the propagator (5) the wave packet at time t can be calculated to be
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Clearly the center of this wave packet has the mean position <x(t)>=
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and the width of the wave packet is given by
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  We note that the wave packet spreads out with increasing time and the narrower the initial wave packet the faster it spreads out.  Note that the width in momentum space 
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does not change with time.
------------------------------------------------------------
Homework 3:

3.1. Exercise using Mathematica or equivalent.

  (a) Show that indeed that the wave packet in eq(8) has the uncertainty in width 
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 and 
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as given.  

  (b) Calculate the Full width at Half Maximum (FWHM) of the density of the initial wave packet in eq(8)  and compare it with  
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D

above. (you can do this one analytically, of course)

  (c) With the known propagator, use Mathematica to "prove" that eq. (S5.1.15) is correct.

3.2.  More on Gaussian wave packet
   For this problem, use m=1, 
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(a) Graph P(x,t) in S5.1.16 for 
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 and 0.1, respectively, for t=5, 10, 20. 

(b) Graph the real part of S5.1.15 for the two cases above. 

  You can submit the results of this exercise by e-mail or a link to me.
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