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                  I. Molecular Structure 
 
  
1.   General Properties of diatomic molecules (Based mostly on BJ) 
     Let a be the internuclear separation of the diatomic molecule, we can estimate the typical electronic 
energy, vibrational energy, and rotational energy. 

  (1) electronic energy  
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(3) Rotational Energy 
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The mass ratio 5-3 10  to10
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Ee ~ 10 eV     Ev = 0.1 eV    Er = 0.001 eV 

 
or in terms of time 
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The energy scale are very different, so the wavefunctions  are separable in 1st order 
 

rotvibrationelectronicTOT       ψψψ=Ψ  
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This forms the physical basis of the Born-Oppenheimer approximation. 
 
 
 
 
 
 
 
2.  The Born Oppenheimer (BO) approximation for one-electron diatomic molecules. 
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In the center-of-mass frame of MA and MB, the Schrödinger is  
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Treat the electronic motion at fixed R 
                       ( ) ( ) ( ) ( )r;Rq  REr;R  VT qqe

rrrr
Φ=Φ+                                       (2) 

qΦ :  electronic wave function, R is fixed in this equation. 
BO expansion 
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Substitute (3) into (1) and use (2), we obtain 
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If the coupling terms are neglected, assuming that the change of the electronic motion with respect to 
R is small, then 
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is to be solved for the nuclear motion. 
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where N2 is the square angular momentum operator for the internuclear rotational motion. 
 
 
Let 
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where Φθ,  are spherical angles of R
r

 with respect to the Lab-fixed axis, then   
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The total energy J,,sE ν  is specified by the electronic state s, vibrational state ν  and rotational state J. 
 
Within the BO approximation, one has to solve (2) and (10).  A typical potential Es(R) for a given J. 
 

 
 
The equilibrium distance Ro and dissociation energy De are defined as above. 
 
3. Rotational and Vibrational Energies 
 

Near Ro, one can expand 
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For small vibrations near Ro, the rotational energy 
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The total energy of the diatomic molecule under this approximation 
 

( ) rvosJ,,s EEREE ++=ν     (12) 
  

The Morse potential is often used for molecular potential 
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where the dissociation energy and the equilibrium distance are explicitly shown. 
 
 
 
Typical Examples: 
 
 Ro(oA) De(eV) 
H2 0.74oA 4.75eV 
I2 2.66oA 1.56eV 

+
2H  1.06 2.65eV 

O2 1.21 5.08eV 
N2 1.09 9.75eV 
 
  
 
4.  Symmetry properties of electronic wave function (nuclei fixed in space) for diatomic 
molecules 
 

Clearly the internuclear axis is a symmetry axis, thus Lz has good quantum numbers ( )Λ . 
 

(i) 

φ∆πσ

=Λ⇒

,

,...3,2   

,,

,1,0Lz
  (rotation along the axis) 

    Thus the φ  dependence of the electronic wavefunction is φΛ±ie . 
 
(ii) Reflection (Ay)  with respect to any plane containing the internuclear axis z, called it the 

y-plane. 
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 Ay converts hΛ  of  Lz into hΛ− . 
 

Thus for 0≠Λ  each electronic state is doubly degenerate. 
 (This degeneracy is removed when coupling between rotation and electronic motion 

is introduced, the splitting is called Λ -doubling.) 
 

For 0=Λ , it is not degenerate.  However, 1A1A y
2
y ±=⇒=  

Thus 0=Λ  states can have 1A y ±→ , i.e., for ∑ + , the w.f. is symmetric with respect to a 
reflection against xz plane. 
 

∑ +  and ∑ −  
 



x 

z

12

e 
2 1

e 
R

1                            2 
>

     Note: Any heteronuclear diatomic molecules has the group symmetry designation vC∞  where the 
first subscript indicates that it has infinite-fold rotation with respect to its major axis. 

(iii) For homonuclear diatomic molecules (parity) inversion with respect to the midpoint of the 
internuclear axis introduces gerade (g) and ungerade (u) states.  Thus we have 

 
etc.,...,  ,, ugug ππσσ  

 
(iv)   Changing RR

rr
−→  for homonuclear molecules (interchange of the two nuclei) 

 
       ( ) ( )r;Rr;R ss
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 This can be achieved by 
(a) Rotation around y-axis by 180o.                                     

This does not change the electronic  
wave function. 

 
(b) Inversion with respect to the center of the electron 
 This introduces (-1) for u states 
 
(c) Reflection with respect to the xz plane  
 introduces (+) or (-1) depending on Ay 
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(v)   Spin of the electrons 
 

If the total electron spin is S, the multiplicity is (2S+1).  If spin-orbit interaction is not 

considered, an electronic state is designated by Λ+1S2X , where X stands for the 
ground state usually. 

 
5.      Noncrossing Rule of Potential Curves 
 

For diatomic molecules, the potential curves depend only on R.  The noncrossing rule states that 
two curves of the same symmetry do not cross.  This is called the Wigner noncrossing rule. 
 
(Proof):  Let E1(Rc) and E2(Rc) are very close to each other 
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The new eigenvalue has the form 
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Simultaneously.  Since Hij is proportional to R∆ , and in general these two equations cannot be 
satisfied simultaneously, thus the two curves of identical symmetry cannot cross.  This is noncrossing 
rule. 
 
However, if 0H12 =′  identically due to symmetry, then the two courses can cross. 

 
  Thus potential curves of different symmetry (all the quantum numbers discussed in section 4) can 
cross. If they have the same symmetry they do not cross. This is the noncrossing rule. For one electron 
and two nuclear charges, i.e., the Coulomb problem, there is additional "dynamic" symmetry so some 
curves of the same symmetry (as discussed in Section 4) can cross. 

6.  The +
2H  Molecule--  

     The electronic wavefunction can be solved exactly within the BO approximation. 
6.1 The “exact” solution 
 

The electronic Hamiltonian 
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The electronic equation is separable in elliptic coordinates 
 

E(R) 

R

The noncrossing
rule. 
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µ  is a separation constant. 
 
The above two equations can be solved numerically to obtain the energy and eigenfunctions. 

⇒See additional notes showing the potential curves of +
2H  obtained from OneMO code. 

 
6.2. LCAO—Linear Combination of Atomic Orbitals 
 

We set to obtain approximate solutions starting with atomic orbitals.  Note at large R we have 
( ) ( )As1 rr;R rr

φ=ψ  or ( )Bs1 rrψ  depending on  electron is close to A or B.  Since the two states are 
degenerate, the zeroth order solution should be 
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Using this model, the electronic potential is calculated from 
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This gives a 1st order estimate of the potential energy at large R. 
 
 



 
 
As R is decreased, the nodal structure stays the same, ( )r;R r

ψ  is called a molecular orbital. 
 
6.3 Correlation Diagram for H2

+ 
 

The molecular orbitals and the potential energy curves depend on R.  We know the two limits,      
∞→R , the separate atom limit and  0R → , the united atom limit 

 
We want to construct rules to connect potential curves, see separate notes (Note-3 below) 
 
 

  
7.  The elementary angular momenta of a diatomic molecule 
 

Elementary angular momenta:  
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Let us neglect spin interaction first 
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For an isolated molecule, the total wave function is eigenfunction of K2 and Kz 
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 when ( ) ( )r;Rs RFss
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Φ=Ψ   as given in the B.O. approximation. 

 
We also know ssz  L ψΛ±=ψ h                      (22) 
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8.  All that you need to know about molecular orbitals of diatomic molecules 
 The molecular orbitals are central to the understanding of the electronic structure of molecules. They are 
the equivalent of atomic orbitals for atoms. We will focus only on diatomics here. The orbital energies, as 
well as the orbital wavefunctions, depend on the internuclear separation R. The molecular orbitals can be 
"constructed" from the linear combination of atomic orbitals. This set of drawings shows how the MO's of 
a homonuclear molecule are constructed from the + and - combination of two AO's from the two centers. 
The dashed lines are the nodal surfaces. 
 

   F1. g&u states from two 2s AO's.         

  F2.  from two 2pz orbitals. 

F3. from two 2px orbitals. 
 
 



 
  F4.alternative way: bringing two AO's to form MO's. 

 
 F5. This is the correlation diagram for homonuclear molecules. 
 



 
   F6. This figure illustrates how the molecular orbitals evolves from the SA limit to the 
UA limit. Note that the inversion symmetry and the nodal plane along the AB axis is 
preserved as R is changed. 

 
F7. This shows how O2 has two unpaired orbitals, resulting in triplet state. 
 



 
     F8. This shows how the SA limit is evolved into the UA limit. Note that this is for 
heteronuclear molecules where ZA>ZB. 

 

 

 
Figure 10.14  of BJ Show the correlation diagram for homonuclear diatomic molecules. 
Figure 10.15  of BJ  show the correlation diagram for heteronuclear diatomic molecules for BA ZZ > . 

 
9. The H2 Molecules 
 

     From the gerade and ungerade molecular orbitals (for each electron) one can construct total 
antisymmetric two-electron wavefunctions for the two electrons in H2 at each internuclear distance R, 
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where the symmetry designation of each state is given on the left. Here )2,1(AΦ  is the ground state, 
)2,1(DΦ  is the first excited state 

 



Express  ( )BAu,g  
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are the covalent and ionic wavefunctions. 

Note that cov
AΦ  dissociates, into H+H, while ion

AΦ  dissociates into H++H- and H-+H+.  Thus at finite R, 
the ground state of H2 can be expressed as the linear combination of covalent and ionic orbitals.  Clearly 

AΦ  does not dissociate correctly to H+H at large R.  This deficiency prevails for all molecules, i.e., for 
large internuclear separation, the molecular orbitals do not dissociate correctly. 
 
  

 
10.  The Hartree-Fock Method 
 
The concept of self-consisted field (SCF) can be extended to molecules.  Start with the spin-oribtal for each 
electron, one can construct the Slater determinant.  Vary the orbitals until the minimum total energy is 
obtained.  At each R, the energies of the occupied orbitals are obtained.  The molecular orbitals are 
calculated over the whole range of R.  Unfortunately, such information is not readily available. 
 
As in atoms, one can improve HF method by introducing configuration interaction. There are 
computational packages called Gaussian, GAMESS and others for users. Similarly the density function 
theory has been extended to moleculess.  
 

 
      Once the molecular orbitals are calculated, the electronic configurations for the ground state of a 
diatomic molecule can be "filled" up from the lowest orbital and up. Here is an example, taken from the 
literature.  Unfortunately, the relative energy order of the molecular orbitals do depend on the internuclear 
separation, and on the method used to do the calculation. For some molecules, the Hartree-Fock 
approximation is not accuate enough and configuration mixing is needed. In such cases, the concept of 
orbital becomes less accurate.   
 

 



 
 F9.  Here the KK means the filled orbitals of 1s ug ,σ . Those from 2s are called 2σ , and those from 2pz 
are called 3σ . 1π  is constructed from 2px.  
                  Normally the energy order is 
          ugguugug σπσπσσσσ 31312211 <<<<<<<  

However, you can see the order of uπ1  and gσ3 can switch for some molecules, see C2 as compared to N2 
through F2. Here the numbers of bonding electrons and antibonding electrons are given as well. The bond 
number is the difference of these two numbers divided by 2.  

  We now know that for N2 listed in the table above is wrong. They should be 24 31... gu σπ for the ground 
state.  See RMP32, 245 (1960).  The Hatree-Fock model for F2 is very poor-- it does not predict a bound 
potential for the ground state. 
 
 
       Some examples of potential curves. 



    These potential curves are taken from Robert Mullikan's 1932 RMP 3, 1-86 paper. Amazing.  
H2

 

 

 
 
  



      
 

 
Note: The potential curves shown here give the total electronic energy vs internuclear distance.  You need 
to understand the "labelling" of these curves.



 
 
 
11. Heitler-London or Valence bond method 
 
   In (24), we show that molecular wavefunctions constructed from MO's can be 
expressed as linear combination of covalent and ionic wavefunctions. In (24) if we treat 
the atomic wavefunctions in (24) variationally then we can calculate the molecular 
wavefunctions as function of R. This is the Heitler-London method or the valence-bond 
method.  
   To get accurate result, as can be expected from (23), in general one needs to add the 
ionic wavefunctions.  
   Such method has been used for small molecules but it is difficult to extend to larger 
molecules. 
 
 
12. bonding, antibonding, π -bonds, hybrid orbitals, ionic bonding 
 
    MO's formed from the two atoms can form bonding (e.g., gσ ) or antibonding (e.g., 

uσ ) orbitals. Additional examples can be found in the table on page 4.  
When the MO's are formed from the π orbitals, then form π -bonds. Since these bonds 

tend to be nearly orthogonal to the internuclear axis, they tend to be weaker. 
  For heteronuclear molecules, such as LiH, we need to consider hybridization. The 

point is that the energy levels of 2s and 2p states of Li are quite close. In the presence of 
another atom, the 2s and 2p0 state can mix to form a hybrid orbital, similar to the Stark 
effect. The molecular orbital is then formed by the mixture from 1s of H with hybrid 
orbital of Li. Fig. 10.17 of BJ illustrates this point well. 
 Note that the electron cloud for heteronuclear molecule is not symmetric with respect to 

the midpoint of the molecule such that each molecule has permanent electron dipole 
moment along the direction of the molecular axis. 
 Molecules like NaCl has ionic bonding. The molecule dissociates into Na++ Cl- 

asymptotically. Thus even at finite R, it still exhibits ionic behavior. Thus for NaCl the 
internuclear potential can take the form  

                            cR
s Ae

R
ERE −+−=

1)( 0  

13. The rotation and vibration of diatomic molecules (recap of  section 7) 
 
  First we consider the case that there is no spins from the electrons and the nuclei. The 

total orbital angular momentum K=L+N where L is for the electrons and N   for the 
nuclei. Since N=RxP it is perpendicular to R and Kz=Lz where z is along R.  The 
eigenvalues of Kz are the same as the eigenvalues of Lz , which are hΛ± . Thus the 
values of K are ,.....2,1, +Λ+ΛΛ  
 
A few remarks--details see BJp514--521 
The rotational wavefunctions are given by the familiar  spherical harmonics if 0=Λ . 

Otherwise you need to use the wavefunctions from Appendix 11 of BJ. 



For each rotational quantum number K, solve (10.94) of BJ to get the vibrational 
energies for each electronic state s.  
 
If we assume that the molecule is fixed at the equilibrium distance then the rotational 

energy is given by BK(K+1) where B= 0
2 2/ Ih is the rotational constant. If the molecule 

is allowed to vibrate, and for the lower states, one can approximate the potential curves 
by a harmonic potential, then the vibrational energy is given by )2/1( +vωh . The 
vibrational period and the rotational constant, together with the equilibrium distance R0 
and the dissociation energy De are important properties of each diatomic molecule in the 
ground state. For higher rotational and vibrational states the centrifugal distortion is large 
and corrections to the simple model discussed here have to be addressed. 
 
 
14. Including electron spin--Hund's case (i-v) or a-e. 
 
     When the spin S of the electrons is included, the angular momentum algebra 

becomes rather complicated. Basically the total J=L+N+S. Depending on the relative 
magnitude of the electrostatic interactions between the electrons, the spin-orbit 
interaction and the spin-rotation interaction, which is the coupling of the spin to the 
internuclear axis, different coupling schemes to get  the total J are needed. You need to 
understand this subject if you do  high-precision spectroscopy or cold molecules. 
Fortunately we can skip this part since we will be dealing with high-energy or high-
power light sources only in this course. Recall that we have encountered similar coupling 
schemes in atoms. 
  For Hund case (a), the electronic states (due to different molecular orbitals) are 

separated first, then the spin-orbital interaction comes in to split each curve into fine 
structure components. Thus the "good" quantum number is the Σ+Λ=Ω , where Λ  is 
the projection of the electronic orbital angular momentum, and Σ  is the projection of spin 
angular momentum, along the internuclear axis. Thus an electronic state is designated as 
 
                                                    Ω

+ Λ12S  
Again, for 0=Λ , you need + or - for the superscript. For homonuclear molecules you 

need gerade or ungerade. 
 
15.  Nuclear spin symmetry and rotational levels 
 
  The total wavefunction of a molecule can be written as  
              nnuclearspirotationelectrontotal rR ΨΨΨ=Ψ ),( rr

 
For homonuclear molecules, if the two nuclei are bosons of spin I, the total 

wavefunction should be symmetric under the exchange of the two nuclei. Among the 
(2I+1)2 degeneracy of the nuclear spin, (2I+1) (I+1) are symmetric and (2I+1)I are 
antisymmetric. The symmetry propery of the rotational wavefunctions is that they are 
symmetric for even J and antisymmetric for odd J. For the electronic wavefunction, the 
interchange of the two nuclei amounts to change R to -R. This change is even for +Σ g  and 



−Σu  and odd for +Σu   and   −Σ g  (see Section 4. iv) . Thus for 16O2 which has a −Σ g
3  ground 

state and I=0, even J will go with antisymmetric nuclear spin states with weight 0 and 
odd J will go with symmetric nuclear spin state with weight 1.  Thus all the even J 
rotational states are missing.   
 
For H2, similar argument shows that even J has weight of 1 and odd J has weight of 3. 
 

 
 
                 II.   Radiative Transitions in Diatomic molecules 
 

16.  summary of electric dipole  selection rules: 
  
The electric dipole transition matrix element is given by 
 

( ) ( ) ( ) ( ) ( ) ( )
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where 

( ) ( ) ( )
r

s
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j
ii
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s rRrRZrRRD rrrrr
,    , Φ−Φ= ∑∑′   (2) 

is the electronic dipole moment at internuclear distance R. 
 
If ss =′ .  For homonuclear molecules, 0)R(D =

r . (the electronic wf  has well-defined parity at 
each R, and the integral in eq 2 vanishes.) 
   For heteronuclear diatomic molecules, )R(D)R(D z=

r
(axial symmetry of the electron 

density). 
 
If ss ≠′ , one can write (1) further (by expressing the operator as a tensor operator) as 

             ( ) ( ) ( )φθφθµ ,H  Y ,H )R(F  )R(D  RF KM1qMK
vv

′′
′=

r
           (3) 

The 2nd term in (3) gives the selection rule 1KN ±=∆=∆          if 0=Λ  
                0,1N ±=∆             if 0≠Λ  
 
The 1st term of (3) gives 1v ±=∆  under harmonic approximation. 
 
For electronic transitions, ss ≠′ . 
 
             If D(R) is assumed to be independent of R, then  
 

( ) ( ) .fRF|RF~ vv
v

s
v

s ′
′
′ =µr  

 
This is called the Frank-Condon principle. 



 
Magnetic selection rules for electronic transitions. 
 
 From (2),  Λ+=Λ′ q  
where ΛΛ′  ,  are projection of orbital angular momentum along the internuclear axis, and 
q is the polarization of the light with respect to the internuclear axis.  Clearly,  ++ Σ→Σ   
and −− Σ→Σ . For homonuclear molecules, g->u and u->g. 
 
 
17. Rotational transitions of diatomic molecules 
 
  We first consider transitions where the electronic state remain the same.  
   For homonuclear molecules, there is no permanent dipole moment so there is no 

rotational transitions.    
   For heteronuclear molecules, the nonzero dipole moment gives rotational spectra. The 

selection rules clearly are  
                               1±=∆K             for 0=Λ  
                                1±=∆K ,0         for 0≠Λ  
For diatomic molecules the dipole moment is directed along the   internuclear axis thus 

there is an additional constraint: 0=∆Λ . 
From the rotational spectra, one can get the rotational constant and thus the equilibrium 

distance R0. 
 
18. Vibrational-rotational spectra of diatomic molecules-- the R, P, and Q branches 
 
    If the transition matrix element  

[1]                       dR )RR( )R(D )RR( D ovo
*
vovv −−= ′

∞

′ ∫ ψψ
rr

 

is not zero then we can have transitions between different vibrational levels. If one 
expand D(R) near the equilibrium distance R0, then the dipole matrix element is 
proportional to  

[2]                dR )RR( )RR( )RR( I ovoo
*
vovv −−−= ′

∞

′ ∫ ψψ  

Assume that the vibrational wavefunctions are approximated by the harmonic oscillator 
wavefunctions, then the change of v is to v+1 or v-1. 
Since the one-unit of angular momentum of photon will be taken by the rotation, 

vibrational transition is accompanied by rotational transitions. Thus the transition from 
(v,K) to (v',K')  is governed by 
  R-branch    0)1(2),()1,1( hvKBKvEKvEhvR ++=−++=  
  P-branch        0)1(2),()1,1( hvKBKvEKvEhvP ++−=−−+=  
for .0=Λ  
 For 0≠Λ , one also has the Q-branch corresponding to (v+1,K) to (v,K) transitions. 

This case is allowed since the one unit of angular momentum can be taken by the electron.  
Within the harmonic oscillator approximation the whole Q branch collapses to 0hv . 



When better approximations are used, the separation between different levels within the 
branch would deviate from the constant and the Q-branch spreads out too. 
 
19. Raleigh and Raman scattering 
 
  When the dipole transition operator is considered to  2nd order, we can have  two-

photon type transitions. The first photon can be absorbed to reach some virtual excited 
electronic states and then it is re-emitted later. Another way to see this is that the 
transition goes through the induced dipole moment. 
 If the final state is identical to the initial state, the process is called Raleigh scattering. 

If the final state is not the same as the initial state, then we have the Raman scattering.   
Raman scattering can be used to study the rotational levels of homonuclear molecules. 

The selection rule is 2,0 ±=∆K . The rotational spectra are separated into Stokes lines (v' 
>v) or AntiStokes lines (v'<v). Since the rovibrational level spacings for molecules are 
quite small, Raleigh and Raman scattering are quite important. 
 
20. Electronic transitions and Franck-Condon principle 
 
   see pp553-554 of BJ 
 
  The electronic transitions occur very fast essentially at the constant internuclear 

distance of the initial state. See Fig 11.8 of BJ. The transition amplitude is proportional to 
the overlap integral between the vibrational states of the two electronic states. 
 
The precise selection rule for dipole transitions depends on the coupling scheme of the 

molecule. For Hund's case (a) or (i), which is valid for small molecules, the selection 
rules are 1,0 ±=∆Λ  and no spin change. For Σ  states, + goes to +, - goes to -. For 
homonuclear molecules, g goes to u and vise versa. 
 


