Problem set -7, due Tuesday, Oct 21, 2003

25. A displacement of an object by a vector ρ is represented by a unitary operator $U_r(\rho)$. We have said in the class that this gives

$$U_r^+(\rho)\hat{r}U_r(\rho) = \hat{r} + \rho$$

Show this relation mathematically. Just consider the displacement is in the x-direction. Hint: Show $\hat{r}U_r(\rho) = U_r(\rho)(\hat{r} + \rho)$ instead of the expression above.

26. This is a very simple exercise, but just want to make sure that you know how to do the simple problems. For any angular momentum, in the representation where \hat{J}^2 and \hat{J}_z are diagonal, what are the matrix representation of \hat{J}_x and \hat{J}_y? Work out the explicit matrices for $J=1/2, 1, 3/2$ and compare your results, for example, (27.26) of Schiff. Note that in this representation the matrices \hat{J}_x and \hat{J}_z are real while \hat{J}_y is purely imaginary.