Attosecond and strong field physics C. D. Lin, Anh Thu Le, Cheng Jin and Hui Wei (Cambridge University Press 2018)

Contents

Preface page x					
1	Elem	ents o	f atoms, molecules and wave propagation	1	
	1.1	One-e	lectron atoms	1	
		1.1.1	Hydrogenic atom and wavefunctions	1	
		1.1.2	Single active electron model for atoms	3	
		1.1.3	Scattering of an electron by a central field potential	4	
		1.1.4	One-electron atoms in weak electromagnetic fields	8	
	1.2	Two-e	lectron atoms	16	
		1.2.1	Schrödinger equation and exchange symmetry of two- electron atoms	16	
		1.2.2	Shell model and level scheme of two-electron atoms	17	
		1.2.3	Doubly excited states, autoionization and Fano resonances	18	
		1.2.4	Description of continuum states of helium and electron-He ⁺		
			collisions	21	
	1.3	Many-	-electron atoms	22	
		1.3.1	The hierarchy of approximate description of many-electron		
			atoms	22	
		1.3.2	The central field approximation and shell model of many-		
			electron atoms	22	
		1.3.3	Density functional theory	24	
		1.3.4	Photoionization of rare gas atoms	26	
	1.4	Gener	al concepts and structure of diatomic molecules	27	
		1.4.1	The Born-Oppenheimer approximation and beyond	28	
		1.4.2	Electronic energy in diatomic molecules	31	
		1.4.3	Nuclear motion in diatomic molecules	33	
	1.5	Struct	sure of polyatomic molecules	36	
		1.5.1	Brief introduction to molecular symmetry	36	
		1.5.2	Electronic energy	42	
		1.5.3		44	
			Vibrational motion	47	
	1.6		ular spectra	48	
		1.6.1	ī	48	
		1.6.2	Spectra of polyatomic molecules	54	
	1.7	_	gation of a laser pulse in free space	57	
		1.7.1	Maxwell's equations	57	

iv Contents

		1.7.2	Paraxial wave equation	58		
		1.7.3	Huygens' integral under the paraxial approximation	59		
		1.7.4	Gaussian beam	62		
	1.8	Matrix	c optics	66		
		1.8.1	Introduction	66		
		1.8.2	The ray-transfer matrix	66		
		1.8.3	Matrices of simple optical components	67		
		1.8.4	Matrices of cascaded optical components	69		
	1.9	Huyge	ns' integral through the general ABCD system	69		
		1.9.1	Huygens' integral in free space	69		
		1.9.2	Huygens' integral through a general ABCD matrix	70		
		1.9.3	Imaging of coherent fields through lenslike systems	70		
		1.9.4	Huygens' integral in cylindrical coordinates	71		
		1.9.5	Examples of ABCD matrices for two optical systems	72		
	Notes	s and c	omments	74		
	Exerc	cises		74		
R	eferen	ces		77		
2	Basic	formu	ulation of interactions between an intense laser pulse and			
	atom	S		78		
	2.1	The fo	ormal theory	78		
		2.1.1	Choice of gauges of the electromagnetic fields	78		
			Volkov wavefunction	80		
	2.2		lation of the solution of the time-dependent Schrödinger			
		equation				
		2.2.1	Numerical solution of TDSE	81		
		2.2.2	Weak field perturbation expansion method	82		
		2.2.3	Strong field or S-matrix expansion method	85		
		2.2.4	Numerical solution of the time-dependent Schrödinger			
			integral equation	86		
		2.2.5	The Floquet method	87		
		2.2.6	Many-electron theories	88		
	2.3	Ultras	hort femtosecond lasers – representation, generation and			
		charac	terization	90		
		2.3.1	Pulse representation	90		
			Generation of femtosecond laser pulses	92		
		2.3.3	Characterization of ultrashort pulses	96		
	2.4	Tunne	l Ionization Theory	96		
		2.4.1	Static or adiabatic ionization model	96		
		2.4.2	Ionization from an intense low-frequency field	101		
		2.4.3	Classical theory of electron in a laser field and the recolli-			
			sion model	103		
	2.5	Strong	field approximation and its modifications	106		
		2.5.1	The KFR theory	106		

v Contents

		2.5.2	Modification of SFA theory for strong field ionization	108		
				100		
		2.5.3	Saddle Point Approximation	109		
		2.5.4	The validity of the SFA	110		
		2.5.5	Coulomb-Volkov approximation (CVA)	110		
		2.5.6	Coulomb-corrected SFA (CCSFA)	110		
		2.5.7	The PPT theory for ionization of atoms by intense light			
			fields	111		
		2.5.8	The QTMC and GQTMC models	112		
]	Note	s and c	comments	114		
]	Exer	cises		114		
Ref	feren	ces		116		
3 :	Stro	ng field	d ionization and low-energy electron spectra of atoms and			
		cules		119		
;	3.1	Total	ionization yield	119		
		3.1.1	Preliminary remarks	119		
		3.1.2	Numerical solution of the TDSE	120		
		3.1.3	Results for atomic hydrogen: dependence on intensity,			
			wavelength and the role of excitation	120		
		3.1.4	Role of excited states in strong field ionization	122		
		3.1.5	Role of resonant excitation in strong field ionization	123		
		3.1.6	High Rydberg states and ionization suppression at high			
		0.2.0	laser intensities	125		
;	3.2	Total	ionization yields vs laser intensity and wavelength: experi-			
	J		vs theory	127		
:	3.3		nergy electron energy and 2D momentum spectra: Multi-			
`	0.0	photon ionization regime				
		3.3.1	TDSE vs SFA models – role of Coulomb potential for	130		
		0.0.1	low-energy photoelectrons	130		
		3.3.2	Comparison of experimental 2D electron momentum			
		0.0.2	spectra with TDSE simulations	135		
;	3.4	Surpri	ising features of photoelectron spectra for ionization by			
			g mid-infrared lasers	137		
		3.4.1				
		0	structures	137		
		3.4.2	Side lobes, spiders and photoelectron holography	142		
;	3.5		ng atoms and molecules with low-energy photoelectrons by			
	0.0		g field ionization	144		
:	3.6		induced rotational and vibrational wave packets of molecules	147		
,		3.6.1	General remarks	147		
		3.6.2	Laser-induced rotational wave packets: one-dimensional	1		
		0.0.2	(1D) alignment	149		
		3.6.3	Laser-induced rotational wave packets: three-dimensional	110		
		2.0.0	(3D) alignment	153		

vi Contents

		3.6.4	Laser-induced vibrational wave packets	156		
	3.7	Strong	g field ionization of molecules	159		
		3.7.1	Orientation and alignment-dependent ionization rates of	150		
		270	molecules M. Landau and Calling and Calling (MO CEA)	159		
		3.7.2	Molecular strong field approximation (MO-SFA)	161		
		3.7.3	Weak-field asymptotic theory (WFAT) for tunnel ionization	162		
		3.7.4	Orientation/alignment dependence of ionization rate and	1.00		
		975	symmetry of the molecular orbital	163		
		3.7.5	Experimental studies of alignment-dependent ionization	165		
		3.7.6	rates Ionization from inner orbitals of molecules	$\frac{165}{166}$		
				100		
		3.7.7	Ionization probability of molecules and calibration of laser	160		
	Maka		intensity	168		
	Exer		omments	169		
D				170 171		
Λ	eferen	ces		1/1		
4	Resc	atterin	g and laser-induced electron diffraction	176		
	4.1	Introd	uction	176		
	4.2	Deriva	Derivation of the quantitative rescattering theory for high energy			
		ATI electrons				
		4.2.1	High energy ATI spectra from numerical simulations	178		
		4.2.2	Second-order strong field approximation (SFA2)	181		
		4.2.3	Extracting the returning electron wave packet	184		
		4.2.4	Calculation of HATI spectra using the QRS theory	187		
	4.3	Extra	eting structure information from experimental HATI spectra	189		
	4.4	Laser-	induced electron diffraction for ultrafast self-imaging of			
		molect	ules: Theory	190		
		4.4.1	Extracting DCS from molecules using HATI electrons	190		
		4.4.2	Conventional electron diffraction and the Independent			
			Atom Model	193		
		4.4.3	Need of new tools for dynamic chemical imaging	195		
		4.4.4	Laser-induced electron diffraction: what are the require-			
			ments?	196		
	4.5	Exper	imental demonstration of dynamic imaging: LIED and			
			methods	199		
			N_2 and O_2	199		
		4.5.2	C_2H_2 – at equilibrium	200		
		4.5.3	Bond breaking in C_2H_2	203		
		4.5.4	Benzene molecule	205		
		4.5.5	Complementary retrieving method in LIED	206		
		4.5.6	Retrieval of 2D structure from 1D aligned polyatomic			
			molecules	208		
		4.5.7	Other tools of dynamic chemical imaging	210		

vii Contents

	Note	s and c	comments	212		
	Exercises					
$R\epsilon$	eferen	ces		214		
5	Func	lament	als of High-order Harmonic Generation	217		
	5.1	Introd	luction	217		
	5.2	Theor	y of high-order harmonic generation by an atom	219		
		5.2.1	Calculation of HHG from solving TDSE	219		
		5.2.2	Strong-field approximation, or Lewenstein model, for HHG	219		
		5.2.3	Quantum orbits (QO) theory	221		
		5.2.4	Factorization of laser induced dipole moment	223		
		5.2.5	Analysis of HHG by monochromatic laser fields with			
			analytical QO theory	223		
	5.3	Quant	itative Rescattering Theory	227		
		5.3.1	The QRS theory for HHG	227		
		5.3.2	Gauge dependence of HHG calculation	229		
	5.4	Phase	matching and propagation of HHG in the gas medium	231		
		5.4.1	General consideration of phase matching with focused			
			Gaussian beams	231		
		5.4.2	Factors contributing to phase mismatch in the optical			
			medium	233		
		5.4.3	Propagation of the driving laser and high harmonics in a			
		_	gaseous medium	237		
	5.5		idence of HHG spectra on macroscopic conditions	242		
		5.5.1	Retrieval of target photorecombination cross sections from	2.46		
			HHG generated in a macroscopic medium	242		
		5.5.2	Wavelength scaling of harmonic efficiency	244		
		5.5.3	Macroscopic HHG spectra of Ar and Xe	245		
			comments	252		
_	Exer			252		
Re	eferen	ces		254		
6			s of High-order Harmonics: HHG Spectroscopy and Opti-			
	miza		Harmonics	257		
	6.1		es of high-order harmonic generation from linear molecules	257		
			High-order harmonic generation and photoionization	257		
		6.1.2	Historical background	258		
		6.1.3	Minimum in the HHG spectra and the two-center interfer-			
			ence model	259		
		6.1.4	Strong field approximation of HHG for molecules	260		
		6.1.5	QRS theory for HHG from aligned molecules	261		
		6.1.6	HHG spectra of aligned N_2 molecules with 800 nm lasers			
			- experiment vs the ORS theory	262		

viii Contents

	6.1.7	1 1	264
	618		266
			200
	0.1.5		269
	6.1.10	9	200
	0.1.10		270
	6 1 11		272
6.2			212
0.2			275
	-		275
	0.2.2		279
	6.2.3		_,,
		structure	280
	6.2.4	Probing dynamically evolving molecules with HHG –	
			284
	6.2.5	Probing dynamically evolving molecules with HHG –	
		electronic dynamics	290
6.3	Route	s to optimizing intense high-order harmonic generation	295
	6.3.1	Introduction	295
	6.3.2	Optimization by phase matching	296
	6.3.3	Generation of harmonics in the water window and keV region	300
	6.3.4	Optimization by multi-color waveform synthesis	303
	6.3.5	Optimization by increase of repetition rates of the driving	
		laser	307
Note	es and c	comments	311
Exer	cises		311
eferen	aces		313
Gen	eration	and Characterization of Attosecond Pulses	319
7.1	Introd	luction	319
7.2	Attose	econd pulse trains	319
	7.2.1	Route to a transform-limited APT	319
	7.2.2	RABITT method for phase retrieval of an APT	321
	7.2.3		324
7.3	Tempe	oral information extracted from APT photoionization	
	experi	ments	326
	7.3.1	Extracting single-photon Wigner delay from two-photon	
		atomic delay	326
	7.3.2	Retrieving photoionization time delay between the $3s$ and	
		3p subshells of Ar	330
	7.3.3	Retrieving phase information in the vicinity of a resonance	332
7.4	Gener	ation of Isolated Attosecond Pulses	333
	Note Exer Exercises General 7.1 7.2	6.1.8 6.1.9 6.1.10 6.1.11 6.2 High I dynam 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.3 Route 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 Notes and of Exercises eferences Ceneration 7.1 Introd 7.2 Attose 7.2.1 7.2.2 7.2.3 7.3 Temp experi 7.3.1 7.3.2 7.3.3	6.1.9 Polarization of high-order harmonics generated from aligned molecules 6.1.10 How can HHG spectroscopy probe the structure of a molecule? 6.1.11 Tomographic imaging of molecular orbital. Really? 6.2 High harmonics spectroscopy from polyatomic molecules and from dynamically evolving targets 6.2.1 Theoretical treatments of HHG from polyatomic molecules on molecules 6.2.2 Early studies of HHG from polyatomic molecules with 800 nm lasers 6.2.3 HHG with mid-infrared lasers and the imprints of target structure 6.2.4 Probing dynamically evolving molecules with HHG – nuclear dynamics 6.2.5 Probing dynamically evolving molecules with HHG – electronic dynamics 6.3 Routes to optimizing intense high-order harmonic generation 6.3.1 Introduction 6.3.2 Optimization by phase matching 6.3.3 Generation of harmonics in the water window and keV region 6.3.4 Optimization by increase of repetition rates of the driving laser Notes and comments Exercises efferences Generation and Characterization of Attosecond Pulses 7.1 Introduction 7.2 Attosecond pulse trains 7.2.1 Route to a transform-limited APT 7.2.2 RABITT method for phase retrieval of an APT 7.2.3 Control of amplitude and phase of an APT 7.2.3 Temporal information extracted from APT photoionization experiments 7.3.1 Extracting single-photon Wigner delay from two-photon atomic delay 7.3.2 Retrieving photoionization time delay between the 3s and 3p subshells of Ar 7.3.3 Retrieving phase information in the vicinity of a resonance

ix Contents

		7.4.1	Methods of generating single attosecond pulses	334
		7.4.2	Enhancing pulse energy of isolated attosecond pulses	336
		7.4.3	Ongoing developments	338
	7.5	Chara	acterization of Isolated Attosecond Pulses	340
		7.5.1	Mathematical expression of IAPs	340
		7.5.2	The FROG-CRAB method	342
		7.5.3	Characterization of broadband attosecond pulses	348
	7.6	Probi	ng time delay in atomic photoionization using an IAP	355
		7.6.1	Wigner time delay in a short range potential	355
		7.6.2	Time delay extracted from IR-dressed XUV photodetach-	
			ment for targets with short-range potentials	356
		7.6.3	Time delay extracted from IR-dressed XUV photoioniza-	
			tion for atoms including long-range Coulomb potential	357
		7.6.4	The controversy of 20 as in the time delay difference	
			between 2p and 2s photoionization of Ne	359
		7.6.5	Accuracy of atomic dipole phase retrieval using FROG-CRAB	361
		7.6.6	Photoionization time delay between Ar and Ne	363
		7.6.7	Challenge of accurately retrieving Wigner time delays from	
			streaked low-energy photoelectrons	365
		7.6.8	Validity of extracting photoionization time delay from the	
			first moment of the streaking trace	365
		7.6.9	Is photoionization time delay a misnomer?	368
			comments	371
	Exer			372
R_0	eferen	ces		373
8			ectron dynamics with isolated attosecond pulses	377
	8.1		iption of Electron dynamics and measurements	377
		8.1.1	Electron wave packet dynamics after ionization by an attosecond XUV pulse	377
		8.1.2	Ultrafast autoionization dynamics of Fano resonances	378
		8.1.3	Evolution of a Fano resonance wave packet in the coordinate space	380
		8.1.4	How to measure the time-dependent buildup of a Fano resonance?	382
		8.1.5	First experimental observation of the ultrafast build-up of	
			a Fano resonance in the time domain	383
	8.2	Attos	econd transient absorption spectroscopy (ATAS)	386
		8.2.1	Introduction	386
		8.2.2	Formulation of ATAS at the single atom level	388
		8.2.3	Propagation of light in the transmission medium	388
		8.2.4	Calculation of single atom induced transition dipole	389

x Contents

8.3	Gener	cal features of ATA spectra for atoms below the first		
	ioniza	tion threshold	389	
	8.3.1	Results from TDSE calculations	389	
	8.3.2	a.c. Stark shift and broadening of bright states: one-level		
		model	391	
	8.3.3	Laser induced states and Autler-Townes splitting: two-level		
		model	392	
	8.3.4	Comparison of theoretical and experimental ATA spectro-		
		grams	392	
8.4	ATA s	spectrogram for autoionizing states	393	
	8.4.1	Model three-level system coupled by two ultrashort pulses	393	
	8.4.2	Time-delayed photoelectron and photoabsorption spectra	396	
	8.4.3	Short-pulse approximation	397	
8.5	Propa	agation of ATA spectra in the gas medium	403	
8.6	ATA s	spectroscopy for small molecules	405	
	8.6.1	Introduction	405	
	8.6.2	ATA spectra of H_2 molecules in the 12-17 eV region:		
		retrieving vibrational wave packet	406	
	8.6.3	ATA spectrogram for N_2 molecules between 14 and 18.5		
		eV: modeling the spectra	408	
8.7	Eleme	ents of probing attosecond electron dynamics and wave		
	packe	t retrieval	411	
	8.7.1	Introduction	411	
	8.7.2	Probing electron correlation with attosecond pulses	413	
	8.7.3	Complete mapping of the time-dependent wave packet of		
		D_2^+ with attosecond XUV pulses	415	
8.8	Probi	ng attosecond electron dynamics of complex molecules	418	
	8.8.1	Complexity of attosecond electron dynamics in large		
		molecules	418	
	8.8.2	Experiment on electron dynamics in phenylalanine initiated		
		by an attosecond pulse	419	
		comments	421	
	ercises		422	
Refere	deferences 4			