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I. Introduction

Since the birth of nonrelativistic quantum mechanics, the independent
particle approximation has served as the backbone of almost all areas of
microscopic physics. In atomic physics, the independent electron approxi-
mation assumes that, to first order, an atom is made of a collection of
independent electrons, and the motion of each electron is determined by an
averaged potential due to the nucleus and the other electrons. This approxi-
mation, whether it is in the form of the Hartree - Fock model or its equiva-
lents, has been used to explain qualitatively as well as semiquantitatively a
wealth of experimental observations. Over the last halfcentury, a major part
of the effort in theoretical atomic physics has been devoted to finding differ-
ent ways of accounting for the deviations of experimental results from the
predictions of the independent electron approximation. Different methods,
such as many-body perturbation theory, the configuration-interaction (CI)
method, and many other perturbative approaches, have been shown to be
capable of accounting for these deviations accurately. When the deviation
from the prediction of the independent electron approximation is large, as
happens in several isolated spectral lines, the situation can often be attrib-
uted to localized “interactions’” between a few states. Such situations are
amenable to the ireatment of the configuration interaction method.

Since the early observation of the absorption spectra of doubly excited
states of He by Madden and Codling (1963, 1965) using synchrotron radia-
tion, it was recognized immediately by Fano and coworkers that a complete
understanding of these new states requires a fundamental departure from the
conventional independent particle approach. Not only should the spectral
observation be explained, but a desirable new approach shouid also provide
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the framework whereby all doubly excited states of atoms and molecules
could be studied. In other words, a new approach should suppty the proper
language such as new quantum numbers. new systematics of spectrat behav-
ior. approximate selection rules. etc., which are also applicable to doubly
excited states of other atoms. Thus one of the goals in the interpretation of
doubly excited states of He is to provide this language, analogous to the study
of hvdrogen atoms to provide a proper language for the independent particie
approximation.

The early photoabsorption spectra of doubly excited states of He indicated
that among the three possible ! P° Rydberg series that converge to the ¥ = 2
limitof He*, only one series is prominently observed, while a second series is
weakly visible and a third series is completely absent (Madden and Codling,
1963, 1969). In a later experiment, Woodruff and Samson (1982) measured
the photoelectron spectra at higher photon energies. Their results for doubly
excited states of He beiow the N = 3, 4, and 5 limits of He ™ are reproduced
here in Fig. 1. According to the conventional selection rules for photoab-
sorption. there are 5, 7, and 9 possible Rydberg series, respectively, of doubly
excited states converging to each of the limits. There was, however, only one
prominent series observed in each case. Similarly, in the photodetachment
of H™ for 'P? doubly excited states below the H(NV = 6) limit, all the reso-
nances observed belong to the same series (H. C. Bryant, [981; private
communication). A desirable theoretical approach should provide not only
a method of calculating the position and width of each doubly excited state
but also the approximate selection rules for different excitation processes.

There are many theoretical approaches which are capable of predicting an
accurate position and width of each doubly excited state. These methods,
such as the configuration interaction method, the Feshbach projection tech-
nique. the close-coupling method, and the complex coordinate rotation
technique and others, provided a wealth of “numerical” data which are
essential to sorting out the systematics of doubly excited states. The contri-
bution from these calculations cannot be underestimated. This is particu-
larly true for doubly excited states since experimental data are so scarce.
Even if these data do exist. the resolution is not good enough to extract their
systematics. Furthermore. it seems clear now that some doubly excited states
are not easily populated in some experiments,

The main limitation of the above-mentioned approaches is that each
doubly excited state iscalculated separately while experimental data indicate
that the selection rule is a property of a series (or a channel). Furthermore,
the results from these types of calculations are sometimes unexpected or
difficuit to explain. As an example. one can predict the approximate posi-

tions of doubly excited states by performing a limited CI caiculation. In
Table I, the results of such a calculation for the ' P? doubly excited states
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FiG. 1. The cross section for the autoionizing region of He doubly excited states below the
¥ = 3.4 and 5 thresholds of He*. The quanium number & and the principal quantum number
n of the series are indicated { Woodruff and Samson. 1982).

TABLE I

CI COEFFICIENTS OF THE FIRST THREE LOWEST DousLY EXCITED STATES of He 'F
BELOW THE He*(N = 3) THRESHOLD

Energy
State  {Ry) Is3p Ipdd Isdp Jpds Imd lddp d4f

1 -0.667 0.683 0616 —0.127 —=0Q.1472 ~-0239 -0203 -0.104
2 —0563 -0.003 -0.005 0.630 —0.610 0330 -0.304 0.068
3 =0.554 0503 -—-03557 -02% -0317 -~-0054 0.231 0.476
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below He*(.¥ = 3) are shown. According to conventional wisdom. one
would expect that the wave function of the two lowest states are the linear
combination of 353p and 3p3d. The calculation shows that this is indeed the
case for the lowest state. The second-lowest state, however. is actually mostly
a linear combination of 3s54p, 3pds, 3pad, 3ddp, . . . . etc. It is the third-
lowest state which is again predominantly a mixture of 35s3p and 3p34. This
example serves 1o illustrate the limitation of the conventional approaches

When the admixture of many configurations is-substantial for a given state-
the meam’ng_of configuration for that state is lost. Information about elec:
tron correfations in these approaches is embedded awkwardly in the mixing
ceefficients. These coefficients provide no direct clues as to how the electrons
are correlated.

One of the goals of studying doubly excited states is to find a new way of
characterizing electron correlations. Mare precisely, we want to find a new
set of quantum numbers which characterize the correlations between two
excited electrons. We also want to know the physical or geometrical inter-
pretation of these quantum numbers and possible new spectroscopic regu-
larities. In this article, our objective is to present the progress toward this goal
up to this time,

The study of doubly excited states described in this article is based mostly
upon the geometrical interpretation of the motion of two excited electrons.
Our major task is to unravel how electrons are correlated by examining the
wave functions in hypersphencal coordinates. This coordinate system is
particularly suitable for analyzing ¢lectron correlations. By assuming that’
the mass of the nucleus is infinite, the configuration of the two electrons is
described by six coordinates. Three of these coordinates are used to describe
the rotation pf the whole atom. In hyperspherical coordinates, among the
three remaining we use one coordinate to describe the size of the atom and
the two pthcrs to describe the relative orientations of the two electrons. The
correlation quantum numbers are related to the nodal structure in these two
angles.

Tr'le rest of this article is organized as follows. In Section I, we discuss the
qualitative aspects of radial and angular correlations. The correlation quan-
tum numbers and the classification scheme are presented in Section II1. This
sec;ion also contains the illustration of isomorphic correlations of states
which have identical correlation quantum numbers and the existence of a
supermultiplet structure. After ashort digression on computational methods
in Section IV, the correlation quantum numbers are re-examined by analyz-
ing the wave functions in the body frame of the atom in Section V. The
existence of approximate moleculelike normal modes of doubiy excited
states and its limited interpretation are also discussed in Section V. In Sec-

DOQUBLY EXCITED STATES 8l

tion VI, the effects of strong electric fields on the resonances of H™ are
discussed. Doubly excited states of muitielectron atoms are briefly discussed
in Section VII. Several final remarks and future perspectives are given in
Section VIIL. _

There are other studies aimed at the understanding of the systematics of
doubly excited states. These include the group-theoretical approach (Wulf-
man, 1973; Crane and Armstrong, 1982; Herrick, 1983, and references
therein), the algebraic approach ( Iachello and Rau, 1981}, and the analysis of
the electron correlation of model two-clectron systems (Ezra and Berry,
{982, 1983). The group-theoretical approach also aims at the classification
of doubly excited states. All of these approaches treat the correlations of
individual states. In the hyperspherical approach the correlation is studied
for each channel and thus any state belonging to that channel has similar
correlation properties. These other approaches, particularly the group-theo-
retical approach, complemented the analysis of correlations in hyperspheri-
cal coordinates presented here. A review of the group-theoretical approach
has been given by Herrick (1983). The applications of the complex-coordi-
nate rotation method to doubly excited states have been reviewed recently by
Ho (1983). The analysis of electron correlations from the hyperspherical
coordinates viewpoint has also been reviewed by Fano (1983). References to
earlier works can be found in that article. In this review, we concentrate on
the progress made since then.

II, Analysis of Radial and Angular Correlations

In this section we describe the correlations of doubly excited states as
revealed through the examination of wave functions in hyperspherical coor-
dinates. After a brief outline of the basic equations and a discussion of the
quasiseparabie approximation where the concept of channels is defined, we
examine the meaning and the nature of radial and anguiar correlations for
some typical channels. The discussion in this section is limited mostly to
L = 0 states. In describing correlations. we always concentrate on the corre-
lation of a given channel rather than that of each individua! state. This is
possible because the correlations for states belonging to the same channel are
similar. Graphical display of correlations for each individual state has been
explored by Berry and coworkers (Ezra and Berry, 1982, and references
therein) using a density function p(r,,0,3,72) which measures the probability
of finding electron | at a distance r, from the nucleus and with interelec-
tronic angle @, given that electron 2 is at a distance r; from the nucleus.
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A. THE HyPeERSPHERICAL COORDINATES

To describe the motion of two electrons in the field of a nucleus, six
coordinates are needed. Qne can choose three coordinaltes, such as the three
Euler angles. to describe the overail rotation of the system and the other three
to describe the internal degrees of freedom. Let us start with atomic states
which have L = 0, their wave functions do not depend on external rotational
coordinates. The internal coordinates can be chosen as the distances r, and r,
of the two electrons and the angle 8,,. 1t1s also possible to replace r, and r, by
R and «, where

R=(r1+ o = t1an~'(ry/r,) (1)

(see Fig. 2). This latter set has the ad vantage that R specifies the “size” of the
atom and does not enter into the descniption of electron correlations directly.
Electron ¢orrelations are then described by the two angles a and 8, only. We
refer to the correlation depicted by the angle a as radial correlation and to the
correlation described by the angle #,, as angular correlation. The correlation
quantum numbers for characterizing doubly excited states provide informa-
tion about radial and angular correlations of the 1wo electrons.

For L # 0 states, the overall rotation of the atom has to be considered.
Instead of using the Euler angles, computationally it is more convenient to
use «, F,, and 7;, where 7, = (6,,¢,)denotes the spherical angles of electron i,
as the five hyperspherical angles. To describe the internal correlations for
L # 0 states, the rotation of the atom will be averaged (see Section 11[,C).

At this point it is convenient to introduce the Schrodinger equation for
1wo-electron atoms in hypersphenical coordinates. Denoting the five angles
a, 7, 7, collectively by €2, the Schradinger equation for two-electron atoms,
written using atomic units, is (Macek, 1968; Lin, 1974b)

d4* A+ 1514 | 2C .
(_?RTZ-'-__R_Z—_-‘-T—ZE)(RSRW);—O (2)
b
) T LA
[ 2 s
8, g

FiG. 2. (a)Diagram of the two-electron configuration. (b} Diagram to illustrate the relation
between Canesian and hyperspherical radial coordinates (Fano and Lin. (973},
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where
1 d d 12 12
Al=——o  _{sinfacosia—]+ _ 3
sin? o cos? a dx s dor costa  sina (3)

is the square of the grand angular momentum operator and
1
Z Z +

cosa sina (1 —sin 2a cos 8,5) 2

= -

(4)

is the effective charge. This effective charge C includes both the electron-
nucleus and electron -electron interactions. In Eq. (4), Z is the charge of the
nucleus,

Equation (2) shows that the eigenvalue of A% R? acts like a ceatrifugal
potential barrier for the simultaneous penetration of the two electrons into
the small-R region, It depends not only on the orbital angular momentum of
each electron, but also on the degree of radial correlation as represented by
the a-dependent operator in Eq. (3). The effective charge C depends only on
the relative coordinates « and 8,,. In Fig. 3 we display the relief map of Con
the (at,8,,) piane for Z = |, The ordinates represent the potentials at R = 1.
In the limit of & — 0 (or a — n/2), the potential surface has a sharp drop
caused by the electron - nucleus attraction. This potential valley corresponds

W a5 0
a {deq)

Fig. ). Potemial function Cla,#,,) in Rydberg units {or a pair of electrons in the fieid of a
proton.,
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to the case in which one electron is near the nucleus and the other is far out.
In the region where r, = r,, which corresponds 1o & = 45°, the potental
energy depends critically on whether 4,, is approximately O or 7. When
#12=0and a = 45°, the two electrons are nearly on top of each other where
the electron - electron repulsion causes the sharp spike seen in Fig. 3. Wealso
note that = 45° and 6,, = 180° is a saddle point; the potential is unstable
away from a = 45°, while it isstable at 6,, = 180° along the coordinate ¢, ,.
. The Schrodinger Eq. {2) can be solved by expanding the total wave fur;cz:-
100 as

YHR.Q) =¥ FARI® (R;Q)/(R57 sin « cos a) (5)

where u identifies the channel and n denotes the nth state within that chan-
nel. The channel function @,(R;Q) satisfies the differential equation

1 d? 13 B
o ( E 'Cm- + m + ZRC) ‘D#(R,Q) = Uﬂ(R)(D“(R;Q) (6)
and the hyperradial function F(R) satisfies the coupled equations,

d? 1
(ﬁ tar ~ UdR) + W R) + ZE.) FUR + T WARFAR =0 (7)

where the coupling terms W are defined as
d d d?
’ﬁ ¢.) EE*(‘I’# pra ¢.) (&

By dropping all the coupling terms and keeping only the diagonal terms, Eq.
(7) becomes

M

w;,.=2<¢

d? l
(d_Rz tag ~ VR + Wu(R) + ZE.) FyR)=0 9)

Notice that the second-order diagonal W{(R) term is included in Eq. (9) as
part of th‘e effective potential. This term is usually excluded in the Born-
Oppenhqlmer expansion in diatomic molecules, but it is included in the
“adla_bauc approximation” of Eq. (9). Under this approximation, the wave
function for the nth state within channel i 1s given approximately by

YUR,Q) = FARD(R;Q)/(R sin a cos o) (10)

The adiabatic approximation was frst introduced by Macek {1968) to
study doubly excited states of helium, The energy levels calculated from this
approach were found to be in good agreement with experimental results and
wqh other calculations, Later work was directed at understanding the corre-
lation properties hidden in the “channe! functions” D, (R:Q). The major task
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sfunderstanding and classifying electron correlations is then to untangle this
multivanable function in appropriate display and to sort out the order and
regularities. To this end, sectional views of the channel function @,(R:Q)on
the relative angles a and ,, are appropriate. We will proceed with simple
examples and then to the complete spectra of doubly excited states. For
simplicity, we will first consider L = O states only.

B. ANGULAR CORRELATIONS

Angular correlation is quite familiar. The wave function for an L =0
two-electron state has the general form

w(Ra8) =3 ®fr,,r)Y ol F) (1)
1
where
21+ 1\1?
y:m=(_1)‘(—?) Pi(cos 8,;) (12)

Therefore, if the two-electron state can be designated as s2 or any linear
combination of 55/, there is no §,; dependence in the wave function and there
is no angular correlation between the two electrons. If it is designated as p? or
pr’, then the wave function is multiplied by an overall cos #,; factor. Ac-
cording to the traditional picture, correlation is defined as the deviation from
the prediction of the independent particle approximation. Therefore, the

- angular correlation for a state designated by pr, for example, is defined to be

the deviation of its wave function from the cos 8,, dependence. We will not
adopt this definition. Instead, we describe how electrons are correlated. Thus
ifthe 6, distribution of a given state is well described by P,(cos f,,), then that
state can be designated by the independent particle notation /2 or ff, We will
search for new designations for all doubly excited states where the iudepen-
dent particle approximatioa fails.

C. RaDIAL CORRELATIONS

Similarto angular correlations, radial correlations are characterized by the
distribution of the wave function in the hyperangle «. In the foregoing
discussion, no distinction has been made between singlet and triplet states
for angular correlations; their difference comes mostly in radial correlations.
Radial correlation is less familiar. For the purpose of illustrating radial
correlations, we examine the solution of the Schrédinger equation by ne-
glecting the §,; dependence in the potential. Under this approximation, /;
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and /, are good quantum numbers and states can be labeled as 152, 1525, and
252, etc. If the wave functions are approximated as in Eq. (10), then these two
variable functions can be dispiayed graphically.

[n Fig. 4 we show the absolute value of the wave functions for 1525 'S¢, 252
1§¢ and 2535 '.5*(we use the independent-particle designation here)of He on
the (r,,r;) plane. We notice that the 1525 'S¢ has a circular node. correspond-
ing to R, = constant. The wave function for this state is concentrated in the
region where r| < r;and in the region where r; < r( (by symmetry). In the
r, < r, region, the wave function along r, for a given r, behaves like a
hydrogenic 25 wave function. The wave function has noticeable amplitudes
in the r, = r; region only when R is inside R,. For 25? 'S¢, there are no
circular nodes, but there are two radial nodal lines running almost paralle! to
the r, and the r, axes, each one corresponding to a = constant. For this state,
the wave function has large amplitudes mostly in the region where r, = r;.In
this example, the 1525 'S¢ has a node in the hyperradiai coordinate R and no
node in the hyperangle a. For 252 'S*, there is no node in R but one node at
oy, where o, depends on R and lies between 0 and 45°. (By symmetry the
other nodal line isgiven by 90° — ar,.) We can differentiate each state by the
nature of its nodal lines. Let n, and 1, denote the number of nodes in the
wave function for the R (0 < R < =) and a {0 < a < 45°) coordinates, re-
spectively; then 1s2s 'S¢ has (ng,n,) =(1,0) while 252 'S¢ has (ng.n,) =
(0.1). The ground state, usually designated as 152 'S¢, has (ng,1,) = (0.0).
Using this notation, the 253s 'S¢ state has (n4,n,) = (1,1); so that this state
has one node in R and one nede in a. This is indeed the case, as shown in
Fig. 4c.

So far we have discussed !5 states only. Since the wave function fora '§¢
state is symmetric under the interchange of the two electrons, the wave
function is symmetric with respect to a =435°. For 35* states. the wave
function has a node at & = 45°. This node is fixed at & = 45° and does not
change with R, To account for the fact that the wave function is symmetric or
antisymmetric with respect to e = 45°, itis convenient to introduce a super-
script 4 (=+1 or — 1). The superscript 4 is not an independent quantum
number, since 4 = (— |)® for L = 0 states; nevertheless it helps to bring out
the symmetry property in the o coordinate with respectto e = 45°. Thusall
the LS states have the new designations of {ng,n,)" and all 35 states have
(ng,n,)~ designations. Since 1525 35¢ is the lowest 35 states, it is given by
(0.0)~, indicating no node in R nor in x except for the fixed node at a = 45°.
In terms of the “total” number of nodal lines, both 1525 'S* and 1525 3S*
states have one nodai line; the nodal line for the former is R = constant and
for the latter isce = 45°. From this, it is clear that 2535 35 has the designation
of (0,1)". In Fig. 5, we see that the corresponding density plot shows that the
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FIG. 5. Same as Fig. 4 except for the 2535 357 of He.

number and nature of the nodal lines are consistent with the (0,1)” designa-
tion.

By neglecting the 8,, dependence in the potential, an L # 0 state can be
expressed as

Wi = F(R)g (a)yr.f,uw(F 1+72)
+ (— 1+a=L4Sg(n/2 = )Y 1y ad 1 F2)) (13)

in the quasiseparable approximation. [n Eq. (13), the symmetry requirement
with respect to the interchange of the two electrons does not impose any
condition on the function g(a), since the symmetry is accounted for by the
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Fig. 6. Channel functions g(a;R) for the two '1P? chanpels of helium converging 1o the
N =2 limit of He*. Shown are the [/;,/;] = [0,1] components of each channel. The dipole
component of the electron — electron interacnons is neglected. () Shows 4 = + | type behavior,
{b) shows 4 = — | type behavior in radial correlations.
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second term on the right. States where the function g(a) itseif does not have a
well-defined or approximate nodal or antinodal structure at o = 45° are
assigned 4 = 0. All singly excited L # 0 states have A = 0. For L # 0 doubly
excited states, in addition to A = ( channels, there are channels where g{a)
exhibits near-antinodal or nodal structure at a = 45°. These channeis are
classified with A = + | and A4 = — |, respectively (Lin, 1974b). For example,
the two PP channels of hetium converging to the N = 2 limit of He* have
these behaviors. By neglecting the 8,, dependence in the potential, we show
in Fig. 6 the {{,,/3} = [0,1} component of the channel functions. The upper
figure shows approximately antinodal structure at & = 45°, similar to the +
channels. The lower figure shows an approximate node at an angle close to
a = 45°, similar to the — channels. This approximate +/— symmetry is one
of the most striking features of doubly excited states.

D. RADIAL AND ANGULAR CORRELATIONS

In discussing radial correlations we purposely neglected anguiar correla-
tions for simplicity. However, angular and radial correlations are not separa-
ble. Consider L = 0 states in the quasiseparabie approximation: All the
information about electron correlations is contained in the channel function
®(Ra,8,5). To show the correlation pattern of two excited electrons, we
exhibit the surface densities on the hyperspherical surface, R(£2) = constant,
by displaying plots of |®(R;a,8,,)]? on the (a,8,,) plane.

A few general remarks will be helpful in understanding the structure of the
charge-density plots to be given below. All the channel functions solved from
Eq. (6) at a given value of R are orthogonal, corresponding to the surface
harmonics on the R(£2) = constant surface. The higher harmonics are or-
thogonal to the lower ones with an increasing number of nodal lines on the
(a,8,5) plane. In Eq. (6), the channel function ®(R;a,d,,) and the eigenvalue
U(R) depend not only on the kinetic energy operators, but also on the
Coulomb interactions between the three charges. To avoid large kinetic
energies, the channel functions must be smooth with respect to cvand 6,; and
possess few nodal lines, To achieve iower potential energies, the electron -
nucleus interaction favors the small-¢ (or ¢ = 7/2) region, while the
electron-electron repulsion term favors the region where a = /4 and
8,; = 7. Thus the excitation energies U(R) and the pattern of electron corre-
lations are “decided” by these competing factors. The lowest channel is
“allowed” to have all the favorable factors at a given R, while the higher
channels approach these favorable factors under the constraint of orthogo-
nality to the lower ones. These constraints and the nature of Coulomb
potentials set up the pattern of electron correlations for doubly excited states.
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We first illustrate how the correlation pattern for a given channel evolves
as the hyperradius R changes. In Fig. 7 we show the potential curve L(R) for
the ground channel of H™ and the surface plots of |®(R:a,8,,)1* for four
valuesof R. At R = | and 2. the kinetic energy term. which is proportional to
[/R?, is large and the charge cloud spreads over the whole (at.,;) plane.
Along the ridge. & = 45°, the two electrons tend to stay closer to 8,, = 180°.
At larger R, R = 4 and 8§, the potential energy term dominates so that the
two electrons tend to stay near small & (or o = 90°), where the electron -
electron repulsion is small. Therefore the channel function becomes nearly
independent of @,,. This lack of angular correlation is quite evident in the
density plot for R = 8.

To get an estimate of how important the angular or radial correlations are
for a given state for this channel, it is necessary to consider the hyperradial
wave function of that state. For example, if the state has large amplitudes in
F(R) for small R, then the angular correlation {or the deviation from the

T T T L | T
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g "r ~H{N=1)
3
'I_'lr- J
[l L1 | | 1
1 1] [ L] T
R {aw)

(b}

FiG. 7. (a) Hyperspherical potential curve for the ground '5* channel of H-. (b) Surface
charge distribution for the 'S¢ ground channel of H- plotted on the (a,8,,) plane at selected
values of R.
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.ndependent particle approximation) is large. [f the amplitude F{R) for' the
jtate is mostly in the large-R region, then there is little angular correlation,
since in the large- R region the channel function is similar to that shown for
the R = 8 plot, which shows little angular correlation.

We next discuss the correlations for the two ' S*doubly excited channels of
H~ thatconverge tothe & = 2 limit of H. The two potential curves are shown
in Fig. 8a; they are labeled as (1,0)* and (— 1,0)* channels. The labeling will
be explained in the next section. For the moment we note that the (1,0)*
channel has an attractive potential weil while the (— L,0}* channel is com-
pletely repulsive. The surface charge-density plots for the two channels are
givenin Fig. 8bat R = §, 12, 20. It is obvious thatthe correlation patterns for
the two channels are quite different. They are also quite different from the

3
¥]
q ; b H (N2}
g 2
3-n_J -
-0al 3 5 Ta—"
Mgl
b

Fic. 8. {a) Hyperspherical potential curves for the two ' S* channels which converge to the
N = ? of H. (b} Surface charge-density piots for the two channels at the values of R shown, Note
the difference in the orientation of the figures along the two columns.
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ground channel shown in Fig. 7. The (1.0)* channel has large charge densities
in the large-8,, region; it also has a nodal line near smail & (and. by sym-
metry, another one near a = 90°). For a given value of R, say R = 8, when
the ground channel occuptes the small-a regioti (and the & = 90° region). its
amplitudes are vanishingly small in the & ~ 435° region. At this same value of
R, we notice that the (1.0)* channel occupies most of the large-8,, region of
the (a.8,,) plane not occupied by the (0.0)* channel. By concentrating the
charge distribution in the & ~ 45° and large-8,, region, the (1,0)* channel
minimizes the kinetic energy and the electron -electron repulsion. The re-
pulsive (—1,0)* channel exhibits charge distnbution mostly in the 0 <
8, < 90° region. The two electrons tend to stay on the same side of the
nucleus and thus experience a large electron-electron repulsion. This re-
gion. however, is still preferable under the circumstances. Forcing the two
electrons to the large-8,, region would require additional nodal lines, which
would increase the expectation value of the kinetic energy and the excitation
energy U(R).

As R increases, we notice that the major change in the channel density
plots is that the density in the middle o = 45° region drops while the 8,
dependence remains nearly constant. The drop in the o == 45° region occurs
when the two electrons in that channel become confined in the two potential
valleys. With this type of R dependence in mind, we can now look at the
correlations of higher channels for a given value of R only. in Fig. 9 we show
the charge-density plots at R = 20 for the three '.S* doubly excited channels
of H™ that converge to the & = 3 limit of H. The three channels are labeled
(2,0¥*, (0,00, and (—2,0)*. We note that the charge-density distribution for
the (2.0)* channel is quite similar to that for the (1,0)* channel shown in Fig.
8bexcept that the (2,0)* channel has a sharper structure around the Wannier
point (# = 45° and 8,;, = 180°). The (0,0)* channel has a pronounced peak
near 6, =90°, in addition to some density in the large-8,, region. The
(—2.0)* channel is marked by a large charge density in the smali-8,, region.

One can continue this type of display for doubly excited states that con-
verge to the higher channels. It is obvious, however, that among the channels
that converge to a given hydrogenic Mlimit, the charge density for the lowest
channel tends to peak at 8,, = 180°, while the highest (or the most repulsive)
one tends to peak near 6,;, = 0 and the intermediate channels occupy the
intermediate-8,, region. Physically this means that the most energetically
stable state is the one where the two electrons are on opposite sides of the
nucleus.

Our discussions so far in this subsection have dealt with 1.5 states only.
The different channels presented differ only in their angular correlations.
For 35 states, the lowest channel is labeled (0,0)™, the two channels that
converge to the N =2 of H are (1,0)” and (—{,0), and the three channels
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FiG. 9. Surface-density plots at & = 20 for the three 'S channels of H- converging to the
N = 3 limit of H. Note the difference in the oncntation of the last figure.

that converge to the V=3 of H are (2,0)7, (0,0)", and (—2,0)". The differ-
ence between the corresponding 'S “and S*channels is in the radial correla-
tion. For *S* channels the symmetry condition is such that the charge density
has to vanish at a = 45°. Thus, for example, the (1,0)* 'S¢ and (1,0)" 35
channels have a similar 6, dependence; i.e., they have similar anguiar corre-
lations, but different radial correlations; the wave function at ¢ = 45° isan
antinode for L5 and a node for 5S¢ (Lin, 1982a).

E. THE VALIDITY OF THE QUASISEPARABLE APPROXIMATION

At thiis point we will make a short diversion to discuss the question of the
validity of the adiabatic approximation (Lin, 1983a), which was used in the
study of doubly excited states in hyperspherical coordinates. [n the conven-
tional Borm - Oppenheimer approximation for diatomic molecules, quasi-
separability was often attributed to the smail ratio of the electron mass to the
mass of the nuclei. The corresponding ratio in two-electron problems is
unity. Therefore it is not obvious why one can use the quasiseparable ap-
proximation.

We emphasize that the reason for the validity of the quasiseparable ap-
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proximation is dynamical in origin. It is due to the large difference in the
quantization energies along different coordinates. This quasiseparability is
independent of the choice of hyperangles and is not limited to two-electron
problems. In recent vears, it has been established that many atomic and
molecular problems can be solved in the quasiseparable approximationif the
problems are expressed in hyperspherical coordinates (Lin, 1986; Mang,
19835).

For two-electron problems, it is possible to check if the wave functions
calculated using different approaches resemble those caiculated using hy-
persphencal coordinates in the adiabatic approximation. This has been ex-
amined for the configuration-interaction (CI) wave functions of Lipsky et al.
(1977). (See Lin, 1983a.) If we rewrite the 25 CI wave function w(r,,r,) in
hyperspherical coordinates, then

w(r,r;) = F(RPIRa,b0,,) {14)

where state n belongs to channel u. [n Eq. (14), DX R:,6,,) is normalized on
the surface at R = constant. From the known Cl wave functions, both £ (R)
and ®(R;a.6,,) can be determined. Here we consider the three lowest 'S¢
states of helium belonging to the (1,0)* 'S¢ channel, which lies below the He*
(¥ = 2} limit. The hyperradial functions deduced from Eq. (14) areshown in
Fig. 0. These functions behave as expected: The lowest state does not have
any node in R, while each higher state acquires one more node in R. In Eq.
(14), our notation indicates that we do not assumne that D R;a,8,,) is inde-
pendent of a. In the quasiseparable approximation in hyperspherical coordi-

«(208
3 ' ) 20 ' 30
I Rlaw}

FiG. i0. R-weighted hyperradial wave functions of the three lowest CI states of the {1.0)f
t5* series of helium below the ¥V = 2 limit of He*. The curves are shown in solid lines in regions
where the angular part of the CI wave function has a large overiap integral (> 95%) with the
adiabatic channel function. {n regions of R where the overlap is less than 95%. the curves are
shown as dashed lines.
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nates, as indicated in Eq. (10), each wave function is given by
F(RYD¥(Ra,0,,). We can calculate the overlap integral

1= (DNR:a.0,)|DP¥Ra.6,,)) (15)

as a function of R to determine the region where the two functions differ. We
indicate the results in Fig. 10. If the overlap [Eq. (15)] is larger than 95% in
that region of R, the curves are shown in solid lines. If the overlap is less than
95%, the curves are shown in dashed lines. From Fig. 10 we notice that the
overlap is larger than 95% in the region where the hyperradial function F(R)
is larger. This clearly illustrates that wave functions calculated from other
approaches, when expressed in hyperspherical coordinates, also exhibit qua-
siseparability in the region where the charge density is large.

We can also display the correlation patterns of wave functions calculated
using other approaches using the conversion equation [Eq. (14)]. In Fig. 11,
we show the surface charge densities of the lowest state of each of the (2,0)*,
(0,00*, and (— 2,0)* 'S¢ channels of He which lie below the He* (N = 3) limit
calculated using the CI method (Lipsky et af., 1977). These surface plots are
quite similar to those shown in Fig. 9 for H™,

(2.0n
Rei2

-20%
R=i8

FiG. 1. Surface-density plots for the lowest states of each of the three 57 Rydberg series of
helium calculated from the Cl approximation. These plots are similar to those shown in Fig. 9,
which were calculated using the adiabatic approximation.
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I11. Classification of Doubly Excited States

In this section we shall describe the classification of doubly excited states
in terms of a set of correlation quantum numbers, X, T, and 4. Theenumera-
tion of these quantum numbers and their approximate physical meaning
will be given. A more precise mathematical definition of these correlation
quantum numbers will be postponed until Section V. Surface charge-density
plots will be used to help visualize the correlation patterns described by these
quantum numbers. It will then be shown that states having identical correla-
tion quantum numbers have isomorphic correlations. This isomorphism is
the underlying reason for the existence of supermultiplet structure of doubly
excited states. The last subsection discusses how the independent electron
picture fits into the present classification scheme.

A. THE CLASSIFICATION SCHEME

In the present scheme, a given state of a two-electron atom is designated by
the notation (K, T)§ Z*'L*, where L, S, and n are the usual quantum
numbers, ¥ is the principal quantum number of the inner electron, and 7 is
the principal quantum number of the outer electron. The spin-orbit interac-
tion 1s not considered throughout our discussion but can be easily included
in a perturbative treatment. A given channel or a Rydberg series u is de-
scribed by the notation u = (X,7)4 2*'L*. Here the principal quantum
number & denotes the hydrogenic principal quantum number in the dissoci-
ation limit. The rules for the assignmentof X, T, 4, and nfora given L, S, N,
and r are discussed below.

{. Assignment of Kand T

Following Herrick and Sinanoglu (1975), the possible values of Kand T
fora given N, L, and = are determined by
T'=012,...,minL N—1)
K=N—-1|-T,N=-3-T7,...,—-(N—1—-1)

For states where n = (— | ¥*!, T = 0 15 not allowed. Notice that the assigned
values of X and 7 do not depend on S. Roughly speaking, T'is the projection
of the total angular momentum L onto the interelectronic axis and

K=~—(r_cos8,,) {17)

where r is the radius of the inner electron. These two quantum numbers K

(16)
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and T were originally used by Herrick and Sinanoglu (1975a,b) to character-
ize approximate doubly excited state wave functions for intrashell states.
Based upon a group-theoretical analysis. they showed that the configura-
tion-interaction wave functions for doubly excited states can be approxi-
mated by “doubly excited symmetry basis™ (DESB) functions. The validity
and the limitation of DESB functions for representing doubly excited states
were examined by Lin and Macek (1984).

2. Assignment of A

This radial correlation quantum number 4 was supplemented to empha-
size the radial correlation of the two electrons (Lin, 1983d, 1984). Its mean-
ing has been illustrated in Section 11,C in connection with the model prob-
lem, where angular correlation was neglected. The quantum number A4 can
take valuesof + [,— |,and O oniy. Both A = + | and — | statescan have large
amplitudes on the potential ridge. We stress that the 4 = + | channel has an
antinodal structure at or near a = n/4 (this statement will be made more
precise in Section V), while the 4 = — ! channel has a node at or near
a = r/4. Electrons in the A4 = 0 states are confined in the two potential
valleys. These states are similar to singly excited states.

The radial correlation quantum number 4 is not independent of Kand T
foragivenZ, S, ¥, and n. It is given by the following simpie relations (Rau,
1984)

A= Tt(- 1).$+T= Tt(— I)S+N—K+l' if K>L~-N

. (18)
A=0 if XsL—-N

With the relations in Eqs. (16) and (18), all the correlation quantum num-
bers K, T, and A for states converging toa hydrogenic limit N can be assigned.
For L 2N — [, all the channels have 4 = (.

In terms of these correlation quantum numbers, X, 7T, and A, all the
doubly excited states of two-glectron atoms can be uniquely designated.
From the correlations characterized by these quantum numbers, it is possi-
ble to understand the photoabsorption data systematically.

3. Selection Rules for Photoabsorption

According to the present recommended notation, the three 'P® Rydberg
series of He below the N = 2 limit of He* are (0,1)3, (1,0)7, and (— [,09.
They are to replace the 2snp + 2pns, 2snp — 2pns, and 2pnd notations used
by Cooper et al. (1963). The designations of Cooper et af. emphasize radial
correlations only and cannot be generalized to other doubly excited states.
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From the meaning of the correlation quantum numbers, one can deduce
from the notation that for states belonging to the (0,1)f channel, the inter-
electronic angle 4,, is nearly 90°, and the two electrons have in-phase radial
oscillations, meaning that both electrons approach or leave the small-R
region simultaneously. For states belonging to the (1,0)7 channel, the two
electrons are on opposite sides of the nucleus with large probabilities near
8,2 = 180°, but they have out-of-phase radial oscillations, meaning that
when one electron is approaching the nucleus the other is moving away from
the nucleus. For states belonging to the (— 1,0)2 channel, the two electrons
are confined in the potential valleys; there is no radial correlation although
the two electrons tend to stay on the same side of the nucleus,

The first photoabsorption data for the excitation of helium doubly excited
states (Madden and Codling, 1963, 1963) indicated that only the (0,1)f
channel is prominently excited, the (1,0)7 channel is barely visible, and the
(= 1,0)§ channel is completely absent. From the data of Woodruff and Sam-
son (1982), as shown in Fig. |, the prominent series below each of the N = 3,
4, and 5 series, respectively, are the (1,1), (2,1)7, and (3,1)7 channels. There
are some indications that the (—1,1)f and (0,1)f channels are also slightly
populated. Since the ground state of He belongs to the (0,0){ channel, these
experimental data indicate that the selection rule for photoabsorption is
AA4=0and AT = |, and the most probable K for a given ¥ is the maximum
Kfor the allowed T=1,ie., K=N—2.

4. Assignment of' n

To be consistent with the principal quantum numbers used in the inde-
pendent particie model, the smailest principal quantum number n, of the
outer electron is chosen as follows.

(a) The lowest n for all A =+ ! channels is n,, = N.

(b) The lowest n forall 4 = — | channelsis n, = N+ I.

{c) The lowest n for the lowest 4 = Ochannelis n_,, = N + 1, and succes-
sive higher 4 =0 channels have n_,_ increases by one unit for each
AK =~ |. Channels having identical X but different 7 have the same n,,.

According to these rules, all intrashell states have 4 = + [ withn = N, The
lowest doubly excited states foreach of the five ! P?channels below N = Jare
S(LUT, o(2,0)7, 5(— 1,17, £0,0)7, and ,(—2,0). These rules also apply to
high-angular-momentum states where all the states belong to 4 = 0. For
example, the six channels for “*H? have the following lowest states: ,(2,0)3,
{113, 6(0.28, 60,00, A— 1.1)3, and 4(—=2.0)3. Recall that these states are
356h, 3pSg, 3p7i, 3d4f, 3d6h, and 3d8j, according to the independent parti-
cle picture, Therefore, the lowest #'s are 4, 5, 6, 6, 7, and 8, as predicted by
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rule (c) above. The (X.7)* designation is preferable to the independent
particle notation even for the 4 = () states because it provides information
about angular correlations; there is no such information available in the
independent particle description. The number of nodes in the hyperradial
function F{R) for a given n of the cuter electron is given by n — ny,,, where
Mein 15 the minimum 7 of the given channel.

B. POTENTIAL CURVES

In the quasiseparable approximation in hyperspherical coordinates, the
wave functions are given by F(R)®,(R;Q). The channel function @ (R:L2)
contains information about electron correlations, which is reflected in the
shape of the channel potential U(R). Now that the channels are identified by
u = (K, T)4¥+1L* channels with identical correlation quantum numbers X,
T, and A4 should have nearly identical correlation patterns and nearly identi-
cal potential curves if the correlation determines predominantly the energies
of the channel. [n this subsection, we discuss the potential curves.

In Fig. 12 we show the potential curves of He 'S¢, '*P% and '2D¢ that
converge to the He*(¥ = 3) limits. Similar curves for higher L’s are shown in
Fig. 13. Only channels that have = (— | }* are shown. Each potential curve
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Fic. 12. Potential curves for all the I2§¢, *3P0 3D channels for He that converge to
He*(V = 3), Curves are labeled in terms of X, T, and A correlation quantum numbers. Reduced
units with £ = | are used.
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Fic. 13. Same as in Fig. 12 except for *FY, G, and " H® channels.

is labeled with K, T, and 4 quantum numbers. We first note that curves
which have tdentical X, 7, and 4 quantum numbers are quite similar and are
nearly degenerate. (All the calculations for He are done using reduced units
with Z=1.)

The assignment of correlation quantum numbers for each manifold fol-
lows these rules:

(1) For agiven L, §, m, and , find the allowed combinations of (X, T4
from Eqgs. (16} and (18).

{2) Order the asymptotic potential curves from the bottom starting with
the maximum allowable K and then in order of decreasing K. [fthere is more
than one values of T for a given K, order from below according to decreasing
values of T, '

(3) At small R, the lower or the more attractive curves belong to the
A =+1 channels. Among the + channels, the large X goes with the lower
curve and foragiven K, the larger Twith the [ower curve. Firstallthe 4 = + |
curves are assigned, then the 4 = — 1 channels, and last the 4 = 0 using the
same rule for each A group.

{4) Connect curves with identical X and 7T in the two regions. Only the +
and — curves are ailowed 10 cross.

The possible number of channels of doubly excited states for states con-
verging to higher He*(N) limits is quite numerous. As an illustration. we
show in Fig. [4 the potential curves of 1357, -3 P9, 1314 and !7 F9states of He
below the He*(NV = 4) limits. Thereare 4, 7,9, and 10 channels for L =0, |,
2, and 3, respectively. The correlation rules discussed above can be used to
construct the “diabatic” curves shown. Notice that the + curves are dis-

DOUBLY EXCITED STATES 101

AU o B e 1 ) O R
Wi} -

-

POTENTIAL CURVE (Ry}

T T OO T I O A A
21 33 45 57 69 27 39 51 &3 75

Rigul .
FiG. 14. Sameasin Fig. 12 except for the '-35¢, P9, 13D and '3 F%channels that converge
to the ¥ = 4 limit of He*. ( ) The + channels; (---) the — channels; and (— - —} the

A = 0 channels. Labels for all the + channels are indicated. The X and 7T quantum numbers for
- channels for singlets are obtained from the K and T of + channeis of triplets, and vice versa.
The K and T ol 4 = 0 channels are the same [or singlet and triplet.

tinctly more attractive and are capable of supporting low-lying bound states.
Experimental data on these high-lying doubiy excited states are very scarce.

The correlation rules presented here can be understood more rigorously in
a [ater analysis (see Section V). Qualitatively, at large R, the electrons for all
states are confined to the potential valleys where radial correlation is not
important so the ordening of potentials at large R is independent of A. [f the
state has a large K, the angle 6,, between the twoelectrons is large, producing
asmaller electron - electron repulsion which in turn results in lower {(R). At
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small R. radial correlation is more important. Channels that have antinodal
structure ata = n/4 have lower U(R). Foragiven 4, alarge X again relates to
smaller electron -electron repulsion and thus lower {{(R). The crossing be-
tween + and — channels is due to the change of the relative importance of
radial and angular correlations as R changes.

C. CORRELATION PATTERNS AND ISOMORPHISM

To display the correlated motion of two electrons in a given channel, we
have to exhibit the surface charge distribution [®,(R:2)[? of the channel
functions, similar to those shown in Figs, 7-9. For L # 0 channels, the
channel _functions depend on five angles, but three of these angles descnibe
the rotation of the whoie atom. To exhibit the internal correlation structure,
we calculate the averaged surface charge densities (Warner, 1980; Ezra and
Berry, 1982; Lin, 1984)

0 (Rin.0,;) = (D (R,Q)|Ha' ~ ax) Kcos &, — cos GIDLR2)) (19)

The explicit expression of g, was given in Appendix A of Lin (1984). With
the deﬁnition of averaged surface charge density given by Eq. (19), we can
now display the correlated motion of any two-electron channel functions for
arbitrary L, §, and 7. Channels which have identical correlation quantum
numbers have isomarphic correlation patterns. To show this, we display in
F!g. 15 and (2,0)7 channel for 'S¢, 2P°, !D¢, and 3F% at R = 20. Referring to
F:gs: 12 and 13, at this value of R the potential for each channel is near the
munimum. From Fig. 15, it is obvious that the correlation patterns for all

;!G‘ 15.  Surface charge-density plots for the (2.0)3 chaanels of 'S*,2P% 'D*, and £ 9 of He
at R = 20.
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Fic. 16. Surface charge-density plots for the (113§ 30% (1,1)y ‘D= (LL1){ 'P9, and (1,1)y
PO at the values of R indicated. Notice that all four plots have similar #,, dependence as the K
and T quantum numbers are identical. The 4 = + and 4 = — channels differ in the nodal
structure at o = x/4.

these four channels are quite similar. They all exhibit a peak at a@ = 45°,
0,3 = [80°, with little charge concentration for 8,, < 90°. The difference is
mostly in the region of small « (and ¢ = n/2). Further remarks on the ongin
of the difference will be given in Section V,C. We note that for a given ¥,
channels which have K = N — | always have maximum densities in 8,5 at
8, = 180",

In Fig. 16 we show two more examples of isomorphism. The correlation
patterns of (1,1)3 2D<, (1,1) ‘P9, (1,1)7 'D*, and (1,1)3 *PP are displayed at
the values of R given. The angle #,, where the density is maximum occurs at
8,2 = 120°. The nodal structure near & = 45° for each channel is consistent
with the + or — values assigned for the quantur number 4 for that channel.
Since the K and T are identical for all these channels, we note that the 8,
distnbution is identical for all of them.

Surface plots for other values of X, T, and A4 can also be pictured. As the
value of X decreases, the charge distribution shifts toward the smaller 6,
region. For negative values of K, the two electrons are mostly on the same
side of the nucleus. The surface plots of 4 = + | channels have antinodal
structure and the 4 = — 1 channels have a fixed nodal line at @ = 45°. In
A = 0 channels the two electrons never reach the potential ridge region.

[>. SUPERMULTIPLET STRUCTURE

According to the quasiseparable approximation in Eq. (10) for the solu-
tion of the two-electron wave functions, the approxirmate energy eigenvalues
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for a given channel i are obtained by solving the one-dimensional equation
{Eq. (9] with the channel potential U(R). Channels that have identical
correfation quantum numbers (K, 7)1 but different L, S, and #, as we have
shown in Section II[,B, have nearly degenerate potential curves. This near-
degeneracy in U, (R) gives near-degenerate eigenenergies. Thus doubly ex-
cited states exhibit new spectroscopic regularities if the energies are ordered
according to correlation quantum numbers. This regularity was first discov-
ered by Hermnck and coworkers for intrasheil doubly excited states from a
group-theoretical analysis. [t can be interpreted in terms of the moleculelike
rovibrational modes. We will come back to this interpretation in Section V.

In Fig. 17 we plot the effective principal quantum number n* of He**
below the He*(N = 3) limits versus the correlation quantum numbers,
(K, 7). The +and —states are grouped separately. Two new spectral regular-
ities are obvious:

(1) The rotorlike structure of states which have the same (K,7)4 but
different L, S, and #. The “string” for each rotorlike series is determined
from Eqs. (16)and (18). Foragiven X, T, and N, the allowed values of L fora
rotorseriesis L=T7,T+ 1, ..., K+ N— 1, Whether the rotor series is a
+ or a — seres is determined by Eq. (18). There are situations where the
number of states in a given string is small. For example, there is only one
member for each of the (0,2)F 'D*, (— L,1)F 'P?, and (—2,0)f 'S¢ series.

(2) There is a repetition of (K, T)* and (X, T )" rotor structure, The — rotor
series for a given (K, T)~ can be obtained from the (X, T)* rotor series simply
by interchanging the spins.

The energy levels shown in Fig. 17 were taken from the extensive CI
calculation of Lipsky et al. (1977). These authors have classified the levels
into different series according to the calculated quantum defects. Some of
their assigned classifications were changed in order to preserve the regular
rotor structure shown.

In Fig, 17 we also notice that states which have identical X, 7, 4, ¥,and L
but different .S and 7 are nearly degenerate, The small splitting is called T
doubling. We notice that the & = (— 1 }**! state always has slightly lower
energy. The origin of this behavior will be explained in Section V F.

Doubly excited states that converge to the higher thresholds exhibit more
pronounced rotor structure. As an example, we display in Fig. 18 the energy
levels of H™** that lie below the H(NV = 5) thresholds. These data were taken
from the calculations of Ho and Callaway (1983). By assigning (X, 7)* quan-
tum numbers to these states and ordering the states according to the (X, T)*
guantum numbers, the energtes of these intrashell states are seen to exhibit
rotorlike structure. The length of each “string” is much longer in this exam-
ple. In fact, some higher members of the group have not been calculated.
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FiG. 18. Encrgy levels of H™ resonances lying below the H(N = §) limit of hydrogen
grouped according to the {K,T)* quantum numbers. Data from Ho and Callaway (1983).

We must emphasize that the rotorlike structure appliesto4 =+ land — |
channels only, but the T doubling applies to 4 = 0 channels as well.

E. SINGLY EXCITED STATES AND DouUBLY EXCITED STATES
wITHA =0

The classification scheme discussed here applies to all states of two-elec-
tron atoms. It incorporates singly excited states as a subset. All singly excited
states have (K, 7)=1(0,0). For 'S¢ A = + {, for 5% 4= —1, and all of the
other L's have A= 0. According to the independent-particle model, the
energy for LsnL L is always lower than the energy for lsnL 'L for two-elec-
tron atoms. This is understood in terms of Pauli exchange correlations: [n
triplet states, the two electrons have parallel spins and thus they tend to stay
away from each other spatially, thus reducing the electron -electron repul-
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Fic. 19. Surfacecharge-density plots for the |snp ' P9 and 1snp PO channelsof HeatB = 2
4, and 6. Notice that the Pauli exchange correlation is reflected as angular correiation in
charge-density distributions.

sion energy. From the hyperspherical viewpoint, this Pauli exchange corre-
lation is reflected in the difference in angular correlation between the two
electrons. To illustrate this point, the surface charge density plots for ! Pand
3Pare shown in Fig. 19 for three values of R. At large R, say R = 6, thereisno
evidence of angular correlation, and the charge distributions for singlet and
triplet are identical. At smaller R, say R = 2, we notice that the tripiet state
has large charge concentration near 6, = |80° while the singlet has larger
concentration in the small-4,, region. Thus the Pauli exchange correlation in
the independent-electron picture is reflected in terms ofangular correlations
if it is visualized from the hyperspherical viewpoint.

The 4 = ( states were mentioned earlier to be states where the electrons
reside in the two potential valleys. In this respect, they are similar to singly
excited states. In fact. their spectral behaviors do resemble those of singly
excited states, as shown in Fig. 20. By displaying these states according to
(K, TP, we notice that the triplet state in each case does lie lower in energy
than the corresponding singlet state except in cases where the irregularity
may be due to the numerical inaccuracy. Data were taken from Lipsky e al.
(1977).
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Fig. 20. Effective quanium aumbers #* for the A = 0 states of hefium doubly excited states
converging to the N = 3 limit of He* grouped according 10 (X, T)®. Notice that the lripiet state is
always below the singlet state for a given K, T, and 7. Noration like ' F indicates 1hat the two
states are nearly degenerate, but 'F is slightly above 3F. The two 'F cases are likely due to
nurerical inaccuracy. Data from Lipsky e af. {1977).

The discussion up to now summarizes the classification scheme and the
spectroscopic regularities revealed through the introduction of cortelation
quantum numbers. Channels that have identical designation of correlation
quantum numbers exhibit isomorphic correlation patterns and near~degen-
erate potential curves. This isomorphism is the underlying reason for the
origin of the rotorlike supermuitipiet structure of doubly excited states that
have radial correlation quantum number 4 = + | or — . The discussion 50
far has been very descriptive for the purpose of presenting the classification
scheme itself and for a general qualitative understanding of the correlation of
doubly excited states. The rest of the article will provide an in-depth quanti-
tative analysis on correlations in hyperspherical coordinates.
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IV. Solution of the Two-Electron Schrodinger
Equation in Hyperspherical Coordinates

[n the previous two sections we discussed the results of the Schrodinger
equation for two-electron atoms in the quasiseparable approximation for the
classification of doubly excited states. In this section, we describe the com-
putational methods used for the solution of the eigenvalue equation [ Eq. (6)]
and present some typical results.

A. HYPERSPHERICAL HARMONICS AND SOLUTIONS AT
SMALL R

We first examine the solution of Eq. (6) in the small-R limit. At small R,
the kinetic energy term in Eq. (6) is proportional to | /R? while the Coutomb
potential energy is proportional to 1/R. In the limit of R =0, Eq. (6) be-
comes

d? i 12
(—@+az—a+m—(v+2)’) U mlE2) =0 (20)
where v = {, + {; + 2m and the eigenfunction ¥, is
Uy tym = St O 1y tae(F1 ) (21}

In EQ.(21), ¥ 1,07, ,72) is the coupled angular momentum function of the
two electrons,

Y eulFyF) = E (Ll LMY Yy (F) Y (P2} (22)

mm

and
Srnel0) = N(cos at*(sin afs™ ' F(—=mm+ [, + L+ 2|, + #sin2 a) (23)
where N is a normalization constant and F is proportional to a Jacobi

polynomial (Morse and Feshbach, 1953). A properly (anti)symmetn'ze_d
hyperspherical harmonic with respect to the interchange of two ejectrons is

given by

1 - - .
UiMQ) = _ﬁ [ niae (@Y 1 ead(Fy P} + (= [prmirsemp (@)

X Y neadlFr ), if {,#1
=41 + (= 1L+ (@Y yual Py P if h=1=1 (24)
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In Eq. {24), the allowed values of m are such that L + §+ m =even
}f i,_ ? {;. Furthermore, the eigenvalue depends only on the sum, v=1{, +
,+2m.

In the R — 0 imit, the quantum numbers /; and /, measure the barrier for
the penetration of each individual electron into the inner region, while the
quantum number v measures the degree of simultaneous penetration of the
two electrons into the smail-R region. [n this limit, the higher eigenvalues v
have.a high degree of degeneracy. An analysis of v =/, + {, + 2m alone can
prpwde some indications about the nature of angular correfations that are
missed in the independent-particle approximation. Strong correlation
occurs when twa or more eigenfunctions u with the same LS quantum
numbers are degenerate. For example, this degeneracy occurs normaily at
R = 0 for 'D* channels with (/,,5) = (0,2) and with {{,,/;) = (1,1) because
they have thesame /, + {,. This degeneracy occurs for all even values of m so
that thg coupling between sd and pp states remains strong. This explains the
strong interchannel coupling between the ksnd ' D*fand kp? ' D¢ states (k < n)
of alkaline earth atoms along the whole ! D* series (O'Mahaony and Watan-
abe, 1985; O'Mahony, 1986; Lin, 1974b). Such mixing also explains the
strong configuration mixing between 2s5xp?2D* and 252nd 2D* in aluminum
(Lin, 1974a; O’'Mahony, 1986; Weiss, 1974). Similar analysis for the degen-
?Irz;;}i )of N.glectron systems has been carried out recently by Cavagnero

B. THE AsYMPTOTIC LIMIT AND THE LONG-RANGE
D1POLE APPROXIMATION

[n. the asymptotic limit when one electron is inside and the other is far
outside, corresponding to the [imit that R — @ and a — 0, the two-electron
wave_function is represented by the product of two independent-electron
functions. In_ this limit, Eq. (6) can be easily solved by transforming R and o
back to the independent-particle coordinates 7, = R sin « and r, = R cos
a=RIf we ex pand the transformed equation in powers of |/ R, the resulting
asymptotic potential (Macek, 1968; Lin, 1974b) is

- - Z: AZ-—-1
[UAR) = L/4R? = W (R} = —— = = )

1
+ -R—z-(tbﬂllf +2rcos 6,,)®,) (25)

Ifa,is the ex.pegtatio.n value of lf. + 2r,cos 8,, forchannel 4, then the channel
potentials within a given N manifold are distinguished by the different dipole
terms a,/ R2. Such dipole potentials were first derived by Percival and Seaton

I sion
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(1957) and by Gzilitis and Damburg (1 963) from the close-coupling a2pprox-
imation in e-H* scattering. It is called the dipole representation.

[n previous works on dipole representation, each channel is labeled by the
eigenvaiues of Eq. (25). This method does not provide convenient integer
quantum numbers. In order to be able to {abel the channels in the asymptotic
limit, a “zero-order dipole basis” was proposed by Herrick (1975). In this
approximate representation, only the dipole term 7, cos 8,, is diagonalized.
Each channel for a given (V,L) is characterized by two quantum numbers, X
and T. The eigenvalue of r; cos 8y, in this representation INKTL) is

(NKTL|r, cos 8,,)NKTL) = —3NK/Z (26)

Notice that this zero-order dipoie operator is degenerate with respect to T.
This degeneracy is removed if the centrifugal potential {3 is included. In a
perturbative calculation, Herrick (1975) showed that the dipole potential in
the asymptotic limit is given by & /R?, with

ay=—=3INK/Z+ L(L+ 1)+ §N?— L = K?=3T?
— (KZ/I2ZN)YBL(L + 1) + N2 =t = K2 = [5T%+ - - - (27)

in the ]NKTL) basis space.

Equation (27) provides the basis for labeling the potential curves in the
asymptotic region, as discussed in Section LiL,B. According to Eq. (27), the
effective dipole potential is most auractive for large positive K and, for a
given X, a large value of 7. Each|JNK TL) channel basis is given as the linear
combination of the product of hydrogenic N/ states and the spherical har-
monics of the outer electron coupled to a total L. This channel function
contains information about angular correlations but not radial correlations.

The asymptotic dipole potential for a given N, K, and T does not depend
on the spin. nor on the parity of the chaanel. The fact that it does not depend
on the parity of the channel is surprising since the {, and /; pairs which form
the same L but different parity are quite different. This degeneracy is not the
result of the perturbation caiculation of Eq. (27). It can be shown that this
degeneracy is exact from numerical calculations. Nikitin and Ostrovsky
(1976. 1978) have derived the same conclusion from the group-symmetry
viewpoint. The fact that the eigenvalues of Eq. (27) are independent of panty
is important for discussing the 7 doubling in Section V.F.

C. NUMERICAL SOLUTION OF THE CHANNEL EQUATIONS
The partial differential equation Eq. (6), can be solved by using an expan-

DO (RQ) = 4 2 g‘I‘.h(R',a)yr,zlm("'l F2) (28)
{443l
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where A is. the proper symmetrization or antisymmetrization operator (the
spin function is not explicitly considered) and Y 1,126 (P F) is the coupled
angular momentum function defined in Eq. (22). We use the convention
that {, </, in the summation in Eq. (28).

With the substitution of Eq. (28) into Eq. (6), 2 set of coupled differential
equations in the angle o are obtained. The number of equations is equal to
the number of {/,,4,] pairs inciuded in Eq. (28). The resulting eigenvalue
equations have been solved by different methods: (1) numerical integration
of the coupled equations (Macek, 1968); (2) diagonalization using hyper-
spherical harmonics (Lin, [974b; Klar and Klar, 1978, 1980); and (3) the
finite difference method (Lin, 1975a, 1975b, 1976). All these methods have
some limitations. The numerical integration method often suffers from
instability and the finite difference method requires the solution of a large
matrix if the number of [/;,},] pair is large. The diagonalization method is
inaccurate at large R. At large R, the solutions are linear combinations of
hydrogenic functions which cannot be expanded in terms of a smail set of
hypersphencal harmonics.

The calculation of the channel functions and the corresponding eigenval-
ues [(R) is significantly simplified with the introduction of an analytical
channel function for a given [/, 4] pair (Lin, 1981). The idea behind this is
quite simple. It is best illustrated in terms of a few examples. Consider the
lowest 'S¢ channel in the {/,,5,] = [0,0] subspace. In the large-R limit,

g Ricx) R=aa=0 2¢ "= Rsinge Rina (29)

to within a normalization constant. There are many different ways to gener-
alize Eq. (29) to the smail-R region. Todo so, we require that the generalized
functions reduce to the hyperspherical harmonics in the limit of 8 = 0. For
the channel considered, this is proportional to sin 2a. A reasonable general-
1zed function for this channel is then

£oi(Ryx) = N(R) sin 2qe~Rinav=a (30

'l"hi; form reduces correctly to the known solutions in the R =0 and R — =
himits. The normalization MR) satisfies

»r2
For the lowest °S*channel in the [0,0] subspace, the generalized function is
gL Ry} = MR) sin 2cx cos 2qe~Rinacoa (32)

Notice that both Egs. (30) and (32) satisfy the proper particle exchange
symmetry under a — n/2 — a for 'S and for 35, respectively.
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This procedure can be extended 1o obtain analytical channel functions for
other L, S, and = states and excited channels. The description for the con-
struction of these functions was discussed by Lin (1981). With these analyti-
cal basis functions the calculation of channel functions &, (R;Q) becomes
very easy. In a typical calculation we include analytical channel! functions
and hyperspherical harmonics as basis functions to diagonalize the coupled
differential equations. For example, to calculate all the potential curves for
LS that lie below the H(V = 3) or He *(N = 3) limits, 2 maximum of about
fifteen basis functions including [/,,/,] = (0,0], [1.I], . . . , upto [3,3] or
[4,4] is needed. The simplicity of the computationai procedure allows us to
study the properties of doubly excited states easily.

Other numerical methods have been proposed recently; see Christensen—
Dalsgaard (1984a),

D. REPRESENTATIVE RESULTS FOR H™

In this article, we are concerned mostly with the correlations of doubly
excited states and the classification scheme. To show that the hypersphernical
approach also gives reasonable quantitative results, we present in this section
some representative resuits of H™ calculated using hyperspherical coordi-
nates.

Consider the LP% resonance states of H™ near the H(V = 2)1limit. The three
potential curves that converge to this limit are shown in Fig. 2!. Notice that

T v T T T T T A T T T T T

H P
-0.20 .
pd

UuR) (Ry)

R (bohr)

F1G. 21. Potential curves for the three ' P? channels of H- that converge to the ¥ = 2 limit
of hydrogen. The +, —, and pd notations refer to the (0.1)f, (1.0)7, and (— 1,0} channels,
respectively.
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the (0.1)* channel has a relatively deep attractive potential weli at small R,
R = § a.u., but becomes repulsive at large R with a 2/R? dependence (Lin,
1975b). The (1,0)™ curve is quite repulsive at small R but has a very shallow
attractive potential well at large R. The (— 1,0)° curve is completely repul-
sive.

This example highlights the many aspects of correlation behaviors dis-
cussed in Sections HI. The + channel has a more attractive potential at small
R because of the in-phase radial correlation of the two electrons. It becomes
repulsive at large R because for K = ( the two electrons tend to stay near 90°
from each other. The (1,0)" channel potential is not very attractive at small R
because of its — character. It has a shallow potential well at large R, behaving
asymptotically as — 3.71/R? (Lin, 1975b), because of the favorable angular
correlation that the two electrons maintain an angie close to 180° (K= 1).
The (— 1,0)° channel is completely repulsive owing to its unfavorable radial
and angular correiations. In this channel, the two electrons are on the same
side of the nucleus (K < 0), and they stay primarily in the valley region of the
potential surface (Fig. 3). _

The potential curves shown in Fig. 21 clearly suggest that resonances
associated with the (1,0)” channel and those with the (0, 1)* channel are quite
different. The — channel is very repulsive at small R and thus the radial wave
function (in R) is quite diffuse. By solving the hyperradial equation [Eq. (9)]
using the — potential, the energy of the lowest state was found to be at
—0.25191 Ry. Neglecting the smail Lamb shift between the hydrogenic 2s
and 2p states, this channel in principie can support ad infinite number of
states (Lin, 1976). But all the higher states are very close to the H(NV = 2)
threshold and have not been observed experimentally. For the (0,1)* chan-
nel, the potential curve suggests the existence of shape resonances. [n actual
calculations, the + potential was found to support a shape resonance which
is 32 meV above the threshold and has a width of 28 meV, Experimentally
these resonances can be observed in electron - hydrogen atom scattering, but
better data were obtained from the photodetachment of H-. Because of the
lack of suitable intense photon sources in the |3 -15 eV region, such mea-
surements were not done until recently. By taking advantage of the existence
of the 800 MeV (v/c = 0.83) relativistic H~ beam from the L AMPF facility at

Los Almos, Bryant et a/. (1977) achieved the desired photon energy range by
aiming lasers toward the incoming H~ beam at different angies. The lasers
were blue-shifted to the desired photon energy range in the H™ frame.

The results of Bryant ez al. (1977) for the photodetachment cross sections
near the H(NV = 2) limit are shown in Fig. 22. It is clearly seen that the
Feshbach resonance associated with the (1,0)” channel is quite narrow, and
the shape resonance associated with the (0,1)* channel is much broader. The
shape resonance was found to have a width of 23 + 6 meV, and the separa-
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FiG. 22. Photodetachment cross seciions of H™ near the ¥ = 2 gxcitation threshold of
hydrogen. The solid line is the result of the theoretical calculation of Broad and Reinhardt
(1976) (Bryant et af.. [977).

tion of the Feshbach and shape resonances was found to be 53 meV. From
the simple calculation using the quasi-separable approximation in hyper-
spherical coordinates, the corresponding results were 28 and 58 meV, re-
spectively. More accurate calculations on these resonances have been per-
formed by other methods. The solid line shown in Fig. 22 was due to Broad
and Reinhardt (1976).

V. Body-Frame Analysis of Correlation
Quantum Numbers

[n Section III we presented a classification scheme of doubly excited states
using the correlation quantum numbers X, T, and A. The angularcorrelation
quantum numbers K and 7, as discussed in Section [V, were adopted from
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Herrick's work for the approximate description of Stark states in the asymp-
totic limits.

The adoption of quantum numbers in the asymptotic region for the de-
scription of doubly excited states seetns unsatisfactory since important cor-
relations occur in the region where the two electrons are close to each other.
From Fig. 3, we notice that the potential surface is quite smooth along the &,
coordinate. This smooth dependence allows us to expect that angular corre-
lations do not vary significantly as R changes adiabatically. Similar conclu-
sions have been obtained through actual numerical calculations (Lin,
1982b). We thus expect that the same quantum numbers Kand 7 used in the
asymptotic limit can be used to describe angular correlations in the inner
region and also of the whole atom. To incorporate radial correlations, the
quantum number A was introduced semiempirically (Lin, 1983d, 1984). In
this section we re-examine these quantum numbers by analyzing the channel
functions in the body frame of the atom (Watanabe and Lin, 1986).

A. CHOICE oF THE BoDY-FRAME AXES

We choose the interelectronic axis
Fra = (r, = r)f|r — g (33)

as the internal axis of rotation. This choice is democratic with respect to the
exchange of the two electrons. The general behavior of this axis is similar to
that of the vector B = b, — b, (Herrick and Sinanoglu, 1975a,b) exploited in
the 0(4) theory of doubly excited states since for a pure Couiomb field the
Lenz vector b is related to r as

r— (3nf22)b (34)

where Z is the charge and 2 is the principal quantum number. For intrashell
states the B in the ({(4) theory is proportional to the interelectronic axisin Eq.
(33). The choice of Eq. (33) as the internal axis also has the advantage of not
specifying the principal quantum numbers n and N of the two electrons.

B. DecomprosiTiON INTO RoTAaATIiONAL COMPONENTS

In displaying the correlation patterns shown in Section III, the charge
densities were averaged over the rotational angles of the whole atom. In this
section, we decompose the whole wave function or channel function into
components along the body-frame axis. Starting with a chosen laboratory
frame, the rotation from the laboratory frame to the body frame is effected
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through a rotation matrix
yt’ll:b\l(flifl) = zylllzLQ{fi!Fi)Dg-}((Cb) (35)
Q

where (F,,7;) are defined in the laboratory frame and (#].73) in the body
frame, and D is a rotation matrix. ‘
Suppose that the wave function is known in the laboratory coordinates.

W, 1) = 2 WE ()Y L dFfa) (36)
hi
Substitution of Eq. (35) into Eq. (36) gives

(e n) = T W R,02)D (@) (37
¢

where
wh{R.a,b5) = 2 wE (R cos a, Rsin @)Y 1) AF1,7) (38)
hh
and—LsQsL. '
Let us consider the symmetry under particie exchange. A careful anal-
ysis in the Appendix of Watanabe and Lin (i986) shows that under
a — n/2 — a, each rotational component satisfies the property

W'&(R, JT/Z - a, 312) = E(_ 1)5+Q W&(Rvavolz) (39)
By introducing a phase factor 4 as
A=n~1y"*T (40)

where 7 = |}, the index A determines the reflection symmetry of the radial
wave function with respect to the o = n/4 axis. Thus A serves as an index for
radial correlations. In the special case L =0, we have T=0, A4 = (—1),
which is the wetl-known symmetry requirement for 'S and >5 states. For
notidentical to zero, there are more than one rotational components. If there
is only one dominant rotational component in Eq. (37), then the radial
correlation quantum number 4 is determined from Eq. (40). In fact. Eq. (40)
is identical to Eq. (18) for A =+1 or ~ 1. We assigned 4 =0 for those
channels which do not have a major rotational component, even though
each rotational component has its own weli-defined symmetry in a.

Each rotational component also has a weil-defined symmetry with respect
10 the #,; = x axis. In fact, it can be shown that (Watanabe and Lin, 1986)

which provides the relation between the motion in &;; and the rotational

I quantum number 7.
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C. PURITY oF ROTATIONAL STATES

The symbol 4, as given by Eq. (40}, has a close connection with the value
of T. According to the decomposition of Eq. (37), if there is only one rota-
tional compenent, then the radial correlation quantum number 4 will be
either A = + | or A = — |. Thusthe purity of +/— radial correlation is related
to the purity of rotational states.

To enrich our picture of the purity of rotational states, we show in Fig. 23
the decomposition of the (1,1)7 3P? and (1,1)} 'P? channel functions at
the values of R where their respective potentials bottom out. The percentage
represents the contribution to the normalization from each 7 component.
For ’P? the T = 1 component has 91% of the integrated density. According
to Egs. (40) and (41), for this component 4 = — | and the function vanishes
along 6, = n. The density plot for the T = | component clearly exhibits

these properties. Figure 23 also shows that there is a 9% contribution of the -

T =0 component for 3P% at R = 23. This component has 4 = + | and an
antinodal structure at §; = m; the density plot for T = 0 clearly shows this
behavior. Similarly, for 'P9, the T = | component represents a 90% contri-
bution and the 7= 0 a 0% contribution at R = |6. In this case, the T = !
component has 4 = + | and a nodal structure at #,; = &, while the T=10
component has 4 = — | and an antinodal structure at §,, = n. The surface
piot for each component exhibits these relations.

The purity of rotationai states maximizes roughly in the range where the
potential is near the minimum. To illustrate the dependence of the purity of

TOTAL

(g et
R=16

10 % 90 %

FiG. 23. Decomposition of the density piots into rotationai components of the (1, 1)y ’P°
and (1.1} 'P? channels of He at the vaiues of R indicated. The percentages represent the
contribution to the normalization from each T component.

|
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Fig. 24. Normalization coefficients for the T = | component for all five ' P? channels of
helium below the He*(V = }) limit. The asymptotic limits of the coefficients corresponding to
R — = for each channel are indicated on the right. Dashed lines are used to indicate the region
where diabatic crossing has been imposed.

rotational states on R for each channel, we show in Fig, 24 the normalization
percentage of the 7= | component for all of the five 'P? channels that
converge 10 the He*(¥ = 3) threshoids. The dashed lines represent the
interpolated region where the potential curves exhibit crossings. We note
that the low-lying channels show greater purity of rotational states, while the
higher channels violate the purity of 7 more severely. We further note that
the rotational quantum number 7 is ill respected in the asymptotic region.
The reason is that the angular motion of the outer electron is represented by
the term {3/R?, which is not diagonal in the pure (X,T’) basis.

D. VIBRATIONAL QUANTUM NUMBERS

Zero-order vibrational states do not emerge automatically from the body-
frame amalysis. To understand the gquantum number K, we first assume
every channel to be in a pure T state. Suppose that the outer electron ap-
proaches the inner one from a large distance. Take the axis of the approach-
ing electron r, to be the z axis of the laboratory frame. In this frame, the
two-electron anguiar momentum function is proportional to Pg(cos 8:1),
where Q = L - 7. The number of nodesin,,(0 < 8,; < n)isf, —|Q|, which
varies between 0 and ¥ — | — T The transformation from the laboratory
frame to the body frame is identity at large r ; the transformation evolves
smoaothly to the small-R limit. Thus, for a given T, we can use the number of
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nodes n in 6, as a label for the vibrational motion in 6,,. In molecuiar
physics, the vibrational quantum number v is related to # by

v=2n+T (42)

The quantum number X used for labeling hyperspherical channels is
related to n and v by

K=N-21~T—1=N~yp—1| (43)

When T is fixed, both v and K change in steps of 2.

The quantum numbers K and v have thus far been used as labels. Accord-
ing to the definition of Kand T from the asymptotic solution, ifachannelisa
pure (K, T) state, the expectation value of the dipole moment r; cos 0y, is
—(3N/2Z)K. We can define a similar leading term in the dipole approxima-
tion which contributes to the vibrational energy
l Rsing
V(R0 = ‘R-i m cos @5, O=sa=<n/d
I Rceosa

R? sint g

Here R*V, determines the polarizability of the system. To examine the
punty of an effective X, we define

cosf,, mMdsaszg? (44)

= 2Z
K{Ry=—|=—= ) RV
(R) (JN)R( 1) (45)
The results for K(R) for He(N = 3, ' P%) channels are shown in F ig. 25. We
note that K{R) indeed varies slowly with R and is very close to the integers X
used to label the channels, particularly for the low-lying channels.

2t P (N=3)
.

I— M [

40 50

30
R (reduced aqu.}

F1G.25. R dependence of the K{R) defined by Eq. (45) for the ' PYN = 3) manifoid of He.
Dashed lines are used to indicate the region where diabatic crossing has becn imposed.
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E. MOLECULELIKE VIEWPOINT OF Two-
ELECTRON CORRELATIONS

The body-frame analysis so far indicates that the quantum numbers Kand
T can be related to the vibrational and rotational guantum numbers used in
molecular physics. This rovibrational viewpoint has been expiored exten-
sively for intrashell states (Herrick er a/., 1980; Kellman and Herrick, 1978,
1980; Herrick, 1983) and for model two-electron atoms (Ezra and Berry,
1982, 1983). By generalizing to intershell states, one can identify (Watanabe
and Lin, 1986) the +/— radial quantum numbers as the symmetric stretch
(for 4 = +) and antisymmetric stretch modes used by quantum chemists
{see the review by Manz, 1985). The potential curves illustrated in Figs.
12-14 and the energy levels shown in Figs. 17 and I8 indicate that the
magnitude of the correlation energies follow the hierarchical order

Uy>Ue> Uy (46)

where U, Uy, Urare the separation of the A = + and — doubiet curves and
the local vibrational and rotational energies, respectively. The higher excita-
tions, particularly the A = 0 channels, lead to the less clear-cut orderand toa
noticeable admixture of other modes. These higher excitations do not ex-
hibit moleculelike maodes.

After the moleculelike modes have been divided into 4 = +and 4 = —
groups, angular correlations can be classified by their degree of excitations.
There are two weli-defined schemes (Herrick, 1983) which can be easily
understood from Eq. (46). One is the 4-supermultiplet scheme which utilizes
the number of nodes in 6,,, namely the n discussed in the previous subsec-
tion, to regroup angular correlation patterns. An exampie is shown in Fig. 26
for the lowest n = Q states for the 4 = + and for the 4 = — subgroups for
doubly excited states of He(; = 3). The vertical axis corresponds to L and
the horizontal axis is labeled by & T, where we have used — T to designate
states which have rotational quantum number T but with panty given by
n = (— 1)**! in order to distinguish it from states with identical T but with
parity 7 = (— 1)£. Note that there is a clear correspondence between the
“+"-type and “—"-type supermultiplets, namely the interchange of the spin
label | « 3. Another scheme is known as the f supermultiplets. Defining
I= L — T, loosely speaking, / corresponds to the rotational degree of free-
dom orthogonai to that represented by 7 (Watanabe and Lin, 1986). With X
as the vertical axis and * T as the horizontal axis, a diamond similar to Fig.
26 can be constructed for each 7 (Herrick ef af., 1980).

The moleculelike normal modes motivated Kellman and Hermick (1980)
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Fia. 26. d-Supermultiplet structure of helium doubly excited states below the ¥ = 3 limit
of He*. (a} Intrashell states; (b} the lowest states of all the 4 = — | channels. Energy teveis from
Lipsky et af, (1977),

to fit intrashell energy levels to the molecular term formula
E=Ex+oV+ D+ XV+I17

+GT2+[B—a(V+ DJILIL+ 1) =T =DILIL+ D—-TY &7
This forrnuia attempts to attribute all the higher-order corrections to the
anharmonicity of the bending vibrational potential, centrifugal distortion,
etc. In atoms, the impurity of the (K,T') states owing to angular excitation is

an equally important cortributor to the departure from the lowest-order
formula

E=Ey+w(V+ 1)+ BI[LIL+ 1)~ T+ GT? (48)
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A more detailed discussion on the limitation of the moleculelike interpreta-
tion of doubly excited states is given in Watanabe and Lin (1986).

F. THE T DoUBLING

[n Fig. 17 we note that each pair of T # 0 states which have identical n, N,
A, L, and K have near-degenerate energies. The splitting of each pair is called
T doubling. T doubling occurs for 4 = + 1 as well as for 4 = — | states. In
fact. it also occurs for 4 = O states, as shown in Fig. 20 for s1ates belonging to
the (—1,1)° channel.

The effective principal quantum numbers shown in Figs. 17and 20 clearly
indicate that between each pair of states the energy of the state with parity
n = (—1):*! is slightly lower than that of the state with parity 7 = (— 1)~
This difference can be attributed to the wave functions near 8, = 0. [tcan be
shown (Rehmus et @/, 1978; Ezra and Berry, 1982) that the wave functions
for states with parity = = (— 1)£*! vanish identically at 8,, = 0. There is no
such constraint for states with parity & = (— 1)-. In general, the wave func-
tions for these latter states are small at 8 ; = 0 and & = n/4, but they do not
exactly varmsh.

A nonzero amplitude near 6;, =0 and @ = n/4 tends to increase the
electron—electron repulsion energy. if all the other quantum numbers, 7, N,
A, L, K, and T, are the same for the pair of states, such a stronger electron-
electron repulsion would result in a higher energy for the state with parity
r = (—1}*. The energy levels in Fig. | 7 are in agreement with this prediction
[see the (1,1)*, (0,2)*, and (— |, 1)* series in the upper frame and the (1,1)",
{0,2)", and {—1,!)" series in the lower frame). This prediction, however. is
not completely confirmed by the results shown in Fig. 18 for the resonances
of H™ below the H(N = 5) threshold ( Ho and Cailaway, 1983). The calcu-
lated energy ordering for the(2,2)*and (1, 1)*channels is opposite to what we
have expected. Whether this irregularity in the T doubling is due to some
other unaccounted effects or due to the inaccuracy in numerical calculations
remains to be resolved. Similar irregulanities in this respect can also be found
in the calculated energies for the resonances of H™ below the H(N = 4)
threshold [see Table II of Ho and Callaway (1983)].

G. SYSTEMATICS OF AUTCIONIZATION WIDTHS

One of the most strking features of the earlier photoabsorption data of
doubly excited states of helium is that the autoionization widths of diffecent
Rydberg series are dramatically different. To characterize the width of a
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Rydberg series, we define a reduced width, T = »#** [ where [, is the
autoionization width of state » with effective principal quantum number n*.
(It is well known that the reduced width defined this way is nearly constant
ajongthe series.) From the data of Madden and Codling (1963, 1965), as well
as the results of eari v close-coupling calculations { Burke and Mc Vicar, 1965:
Burke and Taylor, 1966; see also Fano, 1969), it was shown that the ratios for
the reduced widths of the three 'P° series, (0,1)7, (1,0)7, and (— 1,0}, are
3000: 30: 1. Such drastic differences in widths are typical when we compare
A=+1, -1, and 0 channels.

The systematics of autoionization widths with respect to other quantum
numbers are less clear, although fragmentary evidences and “rules of
thumb™ have been discussed {Herrick, 1983; Rehmus and Berry, 1981;
Watanabe and Lin, 1986). These rules are “understood” in terms of the
correlation properties or in terms of the moleculelike normal modes of
doubly excited states.

(1) The partial width is largest when the continuum channel corresponds
toAN=—1,AK=~1(i.e,Av=0), AT = 0, with 4 unchanged. This rule
is easily understood because the overlap between this continuum channel
and the quasi-bound resonance is largest owing to their similar correlation
patterns. The overlap occurs mostiy near the locus of the ridge (Fano, (981)
where the pair correlation in the continuum channel is just breaking up and
the quasi-bound resonant wave function is gaining amplitude.

(2) The widths for the pair of T doublets are nearly identical, This is well
supported by existing calculations (Ho and Callaway, 1983, 1984). Since the
iower state of the 7 doublet has less amplitude neara = /4 and 8,, = 0, it is
expected that this state has smaller width. The resuits given by Ho and
Callaway (1983) for the resonances of H™ converging to ¥ =4 and 5 of H
thresholds do not support this prediction. It is not clear that this discrepancy
is due to the neglect of other effects or because of numerical inaccuracies,

(3) Along a rotor series, states with higher L have larger widths. This is
because the higher rotor states have larger amplitudes near 6,; = 0. This
effect can be overtaken by the fact that the higher rotor states have less
amplitude near a = n/4. For example, the (4,0)3 rotor series of H™, 'S¢, 2 PO,
'De 3F9 1Ge 3HO U and °K°, as shown in Fig. |8, have widths, in units of
107?Ry,of 1.1,1.2,1.3, 1.2, 1.5, 1.8,0.54, and 0.2 {(Ho and Callaway, |983).

(4yWhen n, ¥, L, S, r, and K are the same, the states with the larger 7 have
the larger widths. Thisis due to the increase in the amplitude near 6,, = 0 for
higher T states. For exampie, the (0,2)7 'D* state of He is a factor of 3.5
broader than the state (0,0)7 'D* (Herrick and Sinanoglu, 1975a). There are
very few other calculations to check the validity of this rule.

These rules were drawn from the few data currenily available with “plau-
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sible” explanations provided from the correlation properties. Since the au-
toionization width depends sensitively on the details of the wave functions of
the quasi-bound state and the continuum state, it is interesting to find out
what systematics of autoionization widths can be drawn from the correlation
properties of the quasi-bound-state wave function alone. Extensive compi-
lation of widths in future calculations will help to check the generality of
these rules.

V1. Effects of Strong Electric Fields on Resonance
Structures in H™ Photodetachment

A. EXPERIMENTAL RESULTS

In this section the effect of electric fields on the resonances of H™ is
discussed. We will not address the large area of the Stark effect of Rydberg
electrons; rather, we will concentrate on the effect of electric fields on the
doubly excited states of H™, where experimental data have been obtained by
Bryant and coworkers at the LAMPF facility at Los Almos. [n their experi-
ments, an external magnetic field up to several kG is applied to the relativis-
tic H™ beam (see Section 1V, E) which corresponds to an electric field of up to
a few MV/cm in the H™ frame. Their resuits are summanzed as follows.

(1) The ' P Feshbach rescnance below the H(V = 2) discussed in Section
IV,E was found by Gram ez a/. (1978) to split into three components; the two
outer components exhibit linear Stark shifts and the middle one exhibits
quadratic Stark shift. Later experimenits by the same group (Bryant e al..
1983) with the use of polarized laser light confirmed that the two outer
components belong to states which have a magnetic quantum number
M =0 and the middle one has A= i. Their results are displayed here in
Fig. 27. We notice that the lowest component was observed to quench at
E ~ 130 kV/cm, the middie branch was found to vanish at around 270
kV/cm, while the upper branch appears to burrow into the shape resonance
for fields higher than 400 kV/cm.

(2) The shape resonance was observed to be quite stable against the electric
field. The results from Bryant er al. (1983) for the width of the shape reso-
nance in the electric field are shown in Fig. 28. [nitially the width decreases as
the field is increased to about 0.2 MV /cm, then it increases rapidly with the
field until 0.7 MV /cm, where its rate of increase begins to decline. There is no
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Fic. 27. Energies of the centroids of Feshbach multiplets as a function of appiied electric
field. Solid lines are from the theoretical results of Calfaway and Rau (1978) (Bryaat ef af.,
1983): () “¢ polarization,” curved prism: (} = polarization,” flat prism; (®) nitrogen laser,
unpolarized.

experimental information about the field at which the shape resonance is
quenched.

(3) The ' D¢ resonance which has a corresponding photon energy of 10.874
eV can be excited by single-photon transitions in an electric field. Indeed, a
structure at approximately the expected ¢nergy of this resonance was ob-
served for fields in excess of 400 kV/cm. It appears that this resonance splits
into two at the higher field. :

(4) The stripping of the ground state of H~ in a strong electric field has aiso
been measured by Bryant's group (private communication, 1983). Their
results, together with the earlier weak-field data from other groups, are
displayed in Fig. 29.

These strong-field resuits are quite interesting in several respects. Since the
resonances studied belong to different channels, the energy shift as well as the
change of the width for each resonance is characterized by the correlated
motions of the two electrons and their relation with respect to the direction
of the electric field.
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B. THEORETICAL INTERPRETATIONS

A preliminary study on the effect of strong electric fields on the resonances
of H™ has been initiated using the quasiseparable approximation in hyper-
spherical coordinates (Lin, 1983c¢). The basic method is similar to that which
was described in Section [ except that the potential due to the Stark field is
included nonperturbatively in the new Hamiltonian. Using the analytical
basis functions of Section 1V, the effective potential curves for each given
electric field can be obtained. These potential curves are used to interpret
semiquantitatively the observations of Bryant ! al. (1983).

(1) We first show that the lifetime of the ground state of H™ in an electric
feld can be understood using this simple picture. In Fig. 30 we show the
adiabatic potential curves of the lowest channel of H~ in different electric
fields in units of MY /cm. We notice that the effect of the electric field is to
introduce a linearly decreasing potential in the large-R region, while the
small-R region is hardly affected. In terms of this picture, the lifetime of the
ground state of H™ can be estimated using the tunneling model similar to
that used to describe the a-decay of nuclei. With potentials as shown in Fig.
30, the lifetime of the ground state can be estimated using a WKB approxi-
mation. The results of such an estimate are shown by the crosses in Fig. 29.
They are in good agreement with the measured results from the low-field to
the high-field region, The discrepancy at the higher fields is probably due to
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FiG. 30. The hyperspherical potential curves for the ground channel of H™ in an electric
_field.
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the breakdown of the WK B approximation when the barrier penetration is
large.

(2) The linear Stark shifts of the zero-field Feshbach resonances can be
understood in terms of mixing with a nearly degenerate state with the same
spin, but opposite parity: the second recursion of a 'S Feshbach sequence
converging to the N = 2 series limit. Such shifts can be calculated using the
diagonalization of a large set of basis functions. The results of such a calcula-
tion by Callaway and Rau (1978) are shown as solid lines in Fig. 27. Such
calculations, however, give only the shifts and provide no information about
the quenching. Using the quasiseparable approximation in hyperspherical
coordinates, the potential curves for the two M = 0 Stark states shown in Fig.
3] can be caiculated. In Fig. 31a we see that the dependence of the potential
curves with the electric field is similar to those shown in Fig. 30 for the
ground channel. As the field increases, the potentials in the outer regions
decrease linearly with R with little change in the inner region. From the
dependence of the potentials with the £ field, a simple estimate based upon
first-order perturbation theory indicates that the energy shift depends lin-
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Fic. 31. (a) The variation of the zero-field (1.0)7 'S* potential curve of H™ in an electric
field. The electric fields are given ip upits of X¥/em. {b) Same as {a) but for the zero-field (1,003
1 P9 channel of H-. The two horizontal arrows indicate the position of field-free resonances.
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early on the strength of the eiectric field. The classical field ionization occurs
at E ~ 100 kY/cm, which is consistent with the experimental value of 140
kV/cm.

The upper linear Stark compouent exhibits a somewhat unfamiliar de-
pendence on the electric field. Asshown in Fig. 31b, when the electric fieldis
applied the potential curve in the inner portion is shified upward, while the
outer portion of the curve is shifted downward with increasing electric field.
In fact. in Fig. 31b we notice that the barrier height is above the field-free
threshold at —0.25 Ry.

The behavior of the potential curves in Fig. 31b clearly indicates an up-
ward Stark shift of its eigenvalue; a first-order perturbation calculation indi-
cates that the shift is linear with £ at small electric fields. The decay width of
the resonance, because of the increase in the height of the barrier with the
electric field, is expected to become narrower at lower fields before it
broadens again at higher fields. A simple WKB estimate based on the calgu-
lated potential curves indicates that the inner potential is no longerattractive
enough 1o support a bound state at £ ~ 350 kV/em. Experimental data do
not give the field where this state 1s quenched since it lies in the shoulder of
the broadened shape resonance.

(3} The effective potential curves in electric fields for the shape resonance
behave similarly to those shown in Fig. 31b; in a weak field the potential
barrier becomes higher while the potential at large R decreases linearly with
R [see Fig. 3 of Lin (1983¢)]. Such dependence impiies that the width of the
shape resonance becomes narrower in a weak electric field before it becomes
broader as the field increases. The narrowing of the shape resonance was
observed by Bryant et af. (1983), as shown in Fig. 28, but the data also
indicate that the width increases rapidly for £ > 400 kV/cm. This broaden-
ing cannot be explained by the calculated effective potentials.

The blue shifts of the spectral lines and the narrowing of the resonances in
an electric feld are not difficult to understand. In a given electric field,
electrons in the lower channels tend to line up opposite to the direction of the
electric field. Ln the higher channels, the orthogonality condition of the wave
functions with respect to lower channels requires that the electrons occupy
regions perpendicular to the field or toward the direction of the field. Such
rearrangement of the charge cloud tends ta increase the energy of the state as
well as to render the state more stable against field quenching.

The simple interpretation presented here for the strong fieid effects on the

resonances is not complete. In an electric field, a resonance state can be
quenched. [ts energy is shifted by the electric field in addition to the autoion-
ization. A complete quantitative evaluation of all these effects requiresa full
treatment of the multichannel scattering aspect of the problem.
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VII. Doubly Excited States of Multiclectron Atoms

So far our discussions have been centered on the doubly excited states of
two-electron atoms, He and H-. In this section, we briefly describe the
progress made in the understanding of doubly excited states of multielectron
atoms.

A. ALKALI NEGATIVE lONS AND ALKALINE EARTH ATOMS

For these two-valence-electron systems, the electron pair of interest is
attracted to an ionic core which is spherically symmetric when both electrons
are outside the core. Under this restriction, the electron pair experiences
primarily an attractive Coulomb potential plus a weaker polarization poten-
tial. On the other hand, penetration of either electron within the core exposes
that electron to a stronger field and to substantial exchange of energy and
angular momentum with the core electrons. These effects are minimal for
two-valence-electron systems where the core can be regarded as “frozen.”
Therefore, these systems are similar to two-electron sysiems.

For the two-valence-electron systems, the electron —core interaction is no
longer Coulombic, and the single particle states in the asymptotic limits
within the same N manifold are no longer degenerate, Thus K and 7 quan-
tum numbers, as defined according to the analysis of Stark states, are no
longer valid when such degeneracy is removed. On the other hand, our
body-frame analysis of the correlation guantum numbers does not rely upon
such degeneracy. The interesting question to be answered is whether the
classification scheme and the properties of doubly excited states unraveled
for the pure two-electron systems remain valid for doubly excited states of
muitielectron systems.

By approximating the electron-core interaction by a suitably chosen
model potential, these two-valence-electron atoms can be solved in hyper-
sphenical coordinates (Greene, 1981; Lin, 1983b). The two 'S* potential
curves of Be which converge to the 25 and 2p states of Be* are shown in Fig.
32. They are labeled in terms of the independent-particle designations, 2ses
and 2pep. These notations are by no means adequate. In Fig. 33, the surface
charge density plots for the two channels at different values of R are dis-
played. For R = 2 and 6, we notice that these plots are quite similar to the
plots for the (1,0)" channel of H™ shown in Fig. 8. At large R, especially
R = 14, the surface plot becomes similar to what one would have expected
for the 2ses 'S*, where there is little angular correlation and the channel
function shows little 8|, dependence. Similarly, for the “2pep’ channel, the
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FiG. 32. Adiabatic potential curves of {aj Be \.5% and (b) Be '§* channels converging to 25

and 2p states of Be*. The channels are labeled using quantum numbers according to the
independent-particle approximation.

charge distributions shown in Fig. 33b for small values of R resemble the
{(—1,0)* channel shown in Fig. 8. At large R, these plots are consistent with
the designation 2pep 'S, as the densities show a cos? 8,, dependence. These
plots clearly indicate that the designations “2ses” and “2pep" are suitable for
the large-R region and the (1,0)* and (— 1,0)* notations are moresuitable for
the small-R region. In terms of the description of individual states, the
single-particle designations 2sns and 2pnp are more appropriate for excited
states (n =» 2), and (K, T )¢ designations are more appropriate for intrashell
states.

The adiabatic approximation was found to be valid for the two 'S* chan-
nels of Be shown, as the coupling between the two channels was found to be
small. Despite the fact that the anguiar correlation does not remain constant
for each channel as R changes (as in the pure two-electron case), the angular
correlation does evolve smoothly with R. Energy levels calculated from each
adiabatic potential were found to be in good agreement with experimental
data and with other calculations (see Lin, 1983b).

It is interesting to ask if radial correlations are preserved for the two-va-
lence-electron systemns along the adiabatic channel. The adiabatic potential
curves for the three 'P? and three 2F° channels of Be below the 25 and 2p
states of Be™ are shown in Fig. 34. They were labeled as 2snp, 2pns, and 2pnd
(Lin, 1983b). By examining the [{,.4] = [0,1] component of the channel
function, Greene (1981) has shown that the a-dependent part (g (o} of Eq.
(13)] of the 2snp channel exhibits “+"-type behavior at small R but it
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FiG. 33. Surface charge-density piots for (a) Be 25es 'S-and (b) Be 2pep ' 5* channels on the
{r,8);) planc for different values of R. Notice that the graphs are oriented differently along the
channels. The surface plots for the 25es5 channel at small R are similar to the plots for the (1,0}
channel, and those for the 2pep 'S at small R are similar to the plots for the (— 1,0} chaonel of
wo-¢lectron atoms. (Sec Fig. 8.)

evolves into a function similar to the hydrogenic 25 at large R. The 2pns
channel exhibits *“—"-type behavior at small R and evolves into a function
similar to a hydrogenic 2p function at large R. These results are shown in Fig.
35. These plots are to be compared with the two graphs shown in Fig. 6 for
He.

In Fig. 34 we also note that the 2snp and 2Zpns curves have a pronounced
avoided crossing at R = 5 a.u, It was found that the coupling term between
the two adiabatic channels isrelatively large. Unlike the +/— crossing for the
!P%(seeFig. 21)in H™, this avoided crossing cannot be treated diabatically. It
turns out that the physical states are better represented by a linear combina-
tion of the adiabatic channels. By solving the coupled radial equations,
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F:c_‘.. 35, Vanations of the a-dependent part of the channel functions {see g(a) of Eq. (13)]
at various values of & for the(a) 2sepand (b) 2pes | P2 channels of Be. For small values of R.z(a)
shows behavior similar to the + radial correlations for the 2sep channel and — radial correlations
for the Zps_:_chagnel {cf. Fig. 7). Atlarge R, g(a) for the 25¢p channel reducestoa Ls-type radial
wave function in the small-ar region with vanishing amplitudas for a ~ /2. For the 2pes

channe:. g(a) is very small in the small-x region but it behaves like a 2p radial function for
_r¥x—~nf
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Greene (1981) has shown that the quantum defects for the 2s5np and 2pns
states are much improved over those obtained from a single adiabatic chan-
nel calculation.

Further work along this line has been shown recently by O'Mahony and
Watanabe {1985) on the 'D< spectrum of Be. Their work departs from the
pure hyperspherical procedure in that they use the R-matrix method to
obtain reliabie data, but hyperspherical wave functions were used to present
a more transparent picture of electron correlations as well as to delineate the
regions of space at which channel coupling occurs. O'Mahony (1986) also
studied the Mg 1 !D* spectrum and extended the method to analyze the
channel interactions in the 2D spectrum of Al [, thus casting the qualitative
analysis of Section [V A on a quantitative basis.

As we proceed to doubly excited states converging to the higher N mani-
fold, the correlations and channel behaviors of the states become closer to
those exhibited in the corresponding channels in H-and in He. In Fig, 36 we
show the potential curves of the three lowest ' P% and ?P? states of Li~ that lie
below the 3s, 3p, and 34 levels of Li. Note that the curves show diabatic
crossing similar to those shown in Fig. 12 for He. No systematic studies of the
correlations of these systems have been accomplished yet. It would be inter-
esting to examine how the supermuitiplet structure of Section [V is modified
for systems like beryllium.

Doubly excited states of other alkaline earths and alkali negative ions have
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F1G. 36, Potential curves for (a) 'P9and [b} 'P?of Li~'converging to the ;¥ = 3 limjisof Li.
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also been studied by Greene (1981) and by Watanabe and Greene (1980).
These subjects have been reviewed by Fano (1983).

B. DoUBLY EXCITED STATES OF He™

Doubly excited states of muitielectron atoms in general consist of an
electron pair outside a compact open-shell core. The core can be viewed asa
perturber that scatters individually one of the outer electrons with a possible
exchange of spin. For He™, these doubly excited states appear as resonances
in ¢- He scattering. An ever-increasing volume of experimental results for
resonances associated with the & = 2 and 3 limits of He have been accumu-
lated (Brunt er al,, 1977; Buckman e al., 1983; Schultz, 1973).

The treatment of doubly excited states of complex atoms as an effective
two-electron hyperspherical problem relies upon the division of the two-
electron configuration space into three physically distinct regions { Watan-
abe, 1982, see Fig. 37). Region [ corresponds to the close simultaneous
approach of the two outer electrons to the core which is practically forbidden
by the centrifugal effects in the ¢nergy range of less than 25 eV. Regions II,
and [I, correspond to the penetration of one of the outer electrons into the
core, independently of the other electron: The problem here reduces to the

I I

\\ .
IV 1oL
Ry 2
Fi16.37. Division ofthe(r, ,r;} plane into three regions. In Region I, both eiectronsare in the
inner region occupied by the core elecrons. In Regions [T, and U,, one of the electrons saters the
core region while the other stays outside. In Region 11, the electron pairs stay outside the core:

they are under the influence of the attractive potential due to the nucleus and of the core
electrons.
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scattering of a single electron by the core. In Region II1, the core is seen by the
electron pair as a mere positive charge. [t is in this region where the problem
can be reduced to the pure two-¢lectron problems which are 1o be treated
using hyperspherical coordinates.

An efficient method for treating these problems has been i(nitiated by
Watanabe (1982). By limiting the solution of the two-electron problems only
to Region [1I, he incorporated the core penetration by one of the electrons by
means of a boundary condition at the interfaces between Regions Il and III.
This is conveniently achieved by adding to the electron-pair Hamiltonian a
singular surface operator which enforces the correct boundary condition at
the core limits (Bloch, 1957), The Hamiltonian in the restricted Region [II
reads then:

H(1,2) = H o {residual) + £ (E) (49)

LooelE) = "ﬁ [Hox — o) + Ha — 7/2 + )] (‘6% - Lc(E)) (50)
where ap =tan~'(ry/R) and #/2 — a, define the two boundaries between
Regions Il and [ll, and L (E) defines the logarithmic derivative matrix for
the correct emergency of the scattered electron from the core,

Watanabe (1982) used this method to study doubly excited states of He™
near the He(1s2s, 152p) limits and compared with the results of the experi-
ment of Brunt er al. (1977). In their more recent work, Le Dourneuf and
Watanabe (1986) extended the method to the doubly excited states of He™
near the He(1s3/) limits. The two-electron normal modes of the doubly
excited states were found not to be broken by the core's perturbation and the
states can be classified similarly to the doubly excited statesof Heand H™. A
more detailed introduction to these voluminous works is not possible here,
We only mention that their work provides a good example that doubiy
excited states of multielectron atoms can be interpreted based upon our
understanding of the doubly excited states of two-electron atoms. Detailed
discussions of their work can be found in Watanabe ef al. (1983) and in Le
Dourneuf and Watanabe (1986).

There have only been a few preliminary studies of doubly excited states of
other atoms. Clark (1984) has examined the CI wave functions of the nega-
tive ions of rare gas atoms Ne~, Ar~, Kr~, and Xe~. By expressing the
two-electron part of the wave functions for some of the resonance states in
hyperspherical coordinates, it was found that their basic correlation patterns
are identical to the corresponding doubly excited states in He and H™. A
more detailed and systematic study of these negative ion resonances is
needed to sort out the spectral regulanty.
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VIII. Concluding Remarks and Perspectives

The study of doubly excited states in this article has centered on the nature
and characteristics of cotrelations of two excited electrons. By representing
wave functlpns in hyperspherical coordinates and examining the symmetry
and regulanties of the surface charge densities on the (a,6,,) plane, anguiar
and radial correlation are conveniently visualized. The adoption of approxi-
mate cqrrelation quantum numbers K, T, and A4 allows us to systematize
correlations and exploit new spectroscopic order of doubly excited states. By
analyzing the wave function in the body frame of the atom, these correlation
quantum numbers can further be interpreted as being analogous to the
moleculelike rovibrational normal modes.

[t is recommended that each doubly excited state be designated as ALKV
25+ 17~ This notation contains information about how the two electrons are
correlated. This new classification scheme incorporates many important
features which are easily revealed by changing one or several quantum num-
bers:

(1) States with fixed K, T, 4, NV, L, S, and n but different # belong to the
same series. States within the same series have similar correlation patterns.
For neutral atoms, the quantum defect along the series is nearly constant.
The selection rule for excitation is charactenstic of the whole series.

(2) A different “'series” can be formed by changing the quantum numbers
n and N simultaneously. For example, the series y(N — 1, 0)} 'S¢ changing
with the value of N forms a “double Rydberg series” (Read, 1977; Rau,
1984a). All the states in this series are characterized by having r, = r; and
6,2 = 180°. For large /, each state behaves like a long linear molecuie (Lin,
1982¢). The correlations of these states are similar to the Wannier state of
two continuum electrons near the double ionization threshold.

(3) States with identical #, N, K, T, and 4 but different L, S, and 7 exhibita
rotorlike structure if 4 = + 1 or — I (Section [lI). Different supermultiplet
structure can be obtained by ordering the states according to the number of
vibrational nodes in the angle 8,, (Section I11).

(4) Singly excited states as well as the independent-electron picture are
included as a subsel of this more general classification scheme.

Most of the works using hyperspherical coordinates have been directed at
understanding the structure, particularly resonance states. This success so
far has not been extended to scattering problems (Lin, [9752; Miller and
Starace, 1980), nor toexcited states where the principal quantum numbers of
the two electrons are very different (Park er a/., 1985; Fink and Zoller, 1985).
The origin of this failure is obvious. Although the hyperspherical coordinates
are very close to the independent-particle coordinates in the asymptotic
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region when one electron is inside and the other is far outside. physically
when the two electrons are well separated it is more appropriate to represent
the system using the independent-particle coordinates. The small difference
between hyperspherical coordinates and independent-particle coordinaies
at large R introduces a small but ever-present radial coupling between the
adiabatic channels. Macek ( [985) has shown that it takes the coupling ofan
infinite number of adiabatic channeis at large R to reproduce the indepen-
dent-particle states in the asymptotic region. Experience (Lin, 1975a) has
shown that the elastic scattering phase shifis in e—H scattering at higher
energies are not well reproduced by one-channel or a few-channet calcula-
tions. This difficulty in obtaining accurate continuum states is responsible
for our inability to obtain more accurate decay widths using hyperspherical
coordinates.

Attemnpts to improve the numerical results using the “post-adiabatic™
method (Klar and Fano, 1976; Klar, 1977) have not been very successful.
Some of the more recent works on the low-lying alkaline earths (O’Mahony,
{985; Watanabe and O'Mahony, 1985; O'Mahony and Greene, 1985) have
adopted the R-matrix method to calculate eigenstates and the use of hyper-
spherical coordinates to analyze the region of configuration space where the
coupling occurs. Recognizing the difficuities in applying hyperspherical co-
ordinates to the large-R region, Christensen - Dalsgaard (1984b) proposed a
new procedure by matching the inner (small-R) hyperspherical coordinate
wave functions oato the outer (large-R) close-coupling wave functions at a
hyperradius R = R,. The value of R, was chosen where the effects of elec-
tron exchange and correlations are small. Preliminary results for the elastic
phase shifts in e~ H scattering indicate that this procedure eliminates the
need of coupling many hyperspherical or many close<coupling channels in
each region. Further investigations are needed to test the general usefulness
of this procedure.

Extensive analysis of doubly excited states so far has been limited 10
two-etectron atoms only. For doubly excited states with a core structure, the
designation presented in this article is adequate for describing the states or
channels in the region where correlations are prevalent. In the outer region,
the channels are labeled more appropnately in terms ofindependent-particle
quantum numbers. General rules for connecting the two regions have not
been established yet. The circumstances where the adiabatic approximation
is violated also need 10 be examined.

Systematic experimental data on doubly excited states are scarce. The
approximate selection rules for photoabsorption from the ground state of
helium is well established. It is not clear, in view of the lack of experimental
data as well as extensive calculations, whether the same selection rules can be
applied to photoabsorption from metastable states of helium. There arelittle
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systematics on the cross sections for forming doubly excited states via elec-
tron impact or ion impact. Preliminary data from van der Burgt and Heider-
man (19835) for e~ He collisions seem to indicate that only the + states are
excited.

Doubly excited states can be populated using multistep laser excitations in
which each of the two valence electrons ¢f alkaline earth atoms are excited
separately {Gallagher, 1986). So far, almost all the data pertain to doubly
excited states of barium, and the principal quantum numbers of the two
electrons are quite different. Because of the lack of calculations, it is not
possible to know whether the doubly excited states populated in these exper-
iments beiong to the 4 = + | channels only or whether the 4 = =1 and 0
channels are also populated. Doubly excited states can also be selectively
populated via double charge-transfer processes by suitably choosing the
projectile -target combinations. Although there are many doubly excited
states produced this way, the limited resolutions available so far do not
permit the identification of individual states.

The theoretical methods and procedures discussed in this article can be
further extended to three-electron systemns to study triply excited states.
Although there are a few calculations for triply excited states using hyper-
spherical coordinates (Clark and Greene, 1980; Watanabe er a/, 1982;
Greene and Clark, 1984), there is very limited information about the corre-
lations of these systems. Preliminary study of excitations beyond triply ex-
cited states so far is limited to the properties of hyperspherical harmonics
(Cavagnero, 1984, 1985).
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