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Pulses in a Strong Dressing Laser Field

Wei-Chun Chu,1, 2, ∗ Toru Morishita,3 and C. D. Lin1

1J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66056, U. S. A.

2Max Planck Institute for the Science of Light,
Günther-Sharowsky-Straße 1, 91058 Erlangen, Germany

3Department of Engineering Science, The University of Electro-Communications,
1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo, 182-8585, Japan

(Received September 18, 2013)

We review the theoretical investigations of the autoionzing wave packet excited by an
isolated attosecond pulse and dressed by a time-delayed intense laser pulse. The few-level
model is described and the applications in photoemission and photoabsorption are given.
For the three-level, resonantly coupled system, the main features are explained by the Rabi
oscillation modulated in the dressing field. For such a system, by precisely controlling the
intensity and the time delay of the dressing pulse, we show the shaping of the attosecond
pulse when propagating in a gas medium. A more sophisticated multi-level system with
coupling terms involving continuum states is also developed, in which the importance of the
continuum-continuum coupling is evaluated with the help of an ab initio calculation.
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I. INTRODUCTION

Atomic and molecular physics deals with systems in the quantum mechanical spatial
and temporal scales. These quantum systems are traditionally studied by energy-domain
measurements with highly developed spectroscopic tools. The absolute domination of the
energy-domain measurements has changed in the past two decades as the ultrafast tools
have acquired better precision, stability, and efficiency over time. One of the most remark-
able ultrafast technologies in recent years is the emergence of reliable, table-top light sources
in the attosecond timescales in the forms of attosecond pulse trains (APTs) and isolated at-
tosecond pulses (IAPs), which are enabled by the high harmonic generation (HHG) in nobel
gases [1, 2]. These light sources have now become indispensable tools for the measurement
and control of ultrafast electronic dynamics in quantum systems. In this article, we limit
ourselves to the use of IAPs for their absolute short timescales and the broadband features,
while thorough introductions to the APTs can be found in extensive review articles [3, 4].
Using extreme ultraviolet (XUV) IAPs synchronized with intense infrared (IR) pulses to
detect electronic dynamics was demonstrated in 2001 for the first time in the photoelectron
emission of krypton atoms [5], and the general method has since been applied to study many
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atomic and molecular processes, including electron tunneling [6], autoionization [7–10], ac
Stark effect [11], and dissociation [12] and ionization [13] of molecules.

Autoionization is a fundamental electron correlation effect in quantum systems. With
the typical timescale of a few to a few hundreds of femtoseconds, the excited autoionizing
state (AIS) decays to the degenerate background continuum, leaving an asymmetric reso-
nance shape in the photoemission (photoelectron) spectroscopy (PES) or photoabsorption
spectroscopy (PAS), which has been characterized by Fano with a simple formula [14].
Physicists have long been observing “Fano resonances” in spectroscopy, most commonly in
synchrotron radiations for high precision measurements. The asymmetry and the width of
the lineshape are determined by the fraction of the metastable-state quantum pathway and
the lifetime of the metastable state, respectively, in a photoionization event. The theory
thus connects the spectral measurement to the dynamics of the autoionization process.

Along the development of mode-locked lasers and strong field physics [15], autoioniz-
ing systems in strong coupling fields, in analogy to the condition for the electromagnetically
induced transparency (EIT) done in bound excited states [16], have been carried out in nu-
merous theoretical reports [17–20] and experiments [21, 22]. The EIT effect has been well
established and become the base of a number of modern optical techniques [23] and can
readily explain the main features in the coupled autoionizing systems. However, the pulses
therein were still considered long compared to the autoionization process and could not
resolve the dynamics directly. The direct time-domain measurement of autoionization was
infeasible until the recent breakthrough in attosecond light sources and in related ultrafast
techniques. For an IAP-excited AIS, the time evolution and the general behavior of the
unperturbed wave packet has been treated numerically [24, 25]. In the XUV+IR configura-
tion, by utilizing the IR simply to deplete the AIS or to “streak” [26–28] the photoelectrons,
the time-domain studies in autoionization were performed theoretically [29, 30] and exper-
imentally [7, 8], where the AIS lifetimes could be retrieved. However, such studies did
not capture the strong coupling between resonances that were emphasized in Refs. [17–22],
and thus limited the capability of the dressing field to effectively manipulate the autoion-
izing system. Beside the models, ab initio calculations have also been employed for the
time-domain experiments for autoionization [31, 32]; however, they are usually numerically
expensive and hard to be extended to more complex systems.

Our goal in this article is to review the development and application of the few-
level model which considers the ultrafast coupling between autoioinizing states using a
synchronized pair of pulses–an IAP and a few-femtosecond intense laser pulse [33–36]. The
wave packet evolving in time is simulated, which returns the PES or PAS comparable to
experimental measurements. In all scenarios, the ability to control the autoionizing wave
packet relies on time-resolving the dynamics of autoionization, the Rabi oscillation, and the
evolution of the pulses. The treatment of the continuum states in such an attosecond wave
packet needs to go beyond earlier approaches [17–20], which would then trigger spectral
features unexpected previously.

The article is organized in the following way. In Sec. II, the EIT-like coupled au-
toionizing system is presented. The model for the wave packet evolution is described, which
provides the fundamentals for spectroscopic calculations. Sec. III introduces the PES in
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FIG. 1: Schematics of the coupled three-level autoionizing system. The XUV IAP excites the wave
packet around the |b1⟩-|ϵ1⟩ resonance, while the intense IR pulse couples it to the other AIS.

this model and demonstrates an attosecond time-delayed PES of the 2s2p(1P ) resonance
in helium dressed by a strong laser pulse. In Sec. IV, the simulation for PAS is illustrated
and demonstrated in the same system. Comparison is made against the simulation with
long pulses, which recovers the typical EIT features. In Sec. V, propagation of the IAP
is then considered for the realistic pulse reshaping. A remarkable enhanced resonant part
of the IAP was theoretically predicted. While the above sections deal with the three-level
system, Sec. VI extends the model to include multiple AISs and the coupling involving
continuum states, with the help by the ab initio calculation. The retrieval of the atomic
structure is shown possible in the presence of such coupling terms. In all sections, for the
model description, atomic units (a.u.) are used unless otherwise specified, and for applica-
tions, electron Volts (eV) are used for energy and femtoseconds (fs) are used for time unless
otherwise specified.

II. THREE-LEVEL WAVEFUNCTION

Three-level systems coupled by laser fields are most notably studied for coherent
population trapping (CPT) [37, 38] and the EIT effect [16, 23]. It is common to solve
the time-dependent Schrödinger equation (TDSE) for the coherent quantum state of the
system in terms of the atomic eigenstates. With intense laser pulses, as what this article
concerns, the field is treated classically. Our intention is to calculate the time-evolution
of the wavefunction for the Hamiltonian of the system specified by a given set of atomic
parameters and the external field.

For coupled AISs, as differing from coupled bound states, the continuum states asso-
ciated to the AISs are included in the total wavefunction as in Refs. [17–20] and illustrated
in Fig. 1. The wavefunction can be generally written in the form of
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|Ψ(t)⟩ = e−iϵgtcg(t)|g⟩+ e−iϵet

[
cb1(t)|b1⟩+ cb2(t)|b2⟩

+

∫
cϵ1(t)|ϵ1⟩dϵ1 +

∫
cϵ2(t)|ϵ2⟩dϵ2

]
, (1)

where |g⟩ is the ground state, |b1⟩ and |b2⟩ are the bound configurations of the two Fano
resonances, and |ϵ1⟩ and |ϵ2⟩ are the two groups of continuum states associated with |b1⟩
and |b2⟩, respectively. The energy levels of the three bound states are ϵg, ϵb1 , and ϵb2 ,
respectively, and ϵe ≡ ϵg + ωX is the central energy of the excited wave packet, with the
XUV central frequency ωX factored out of the excited wave packet. Note that the |b⟩
and |ϵ⟩ states are not eigenstates of the atomic system, but rather a convenient choice
where autoionization can be visualized. With the XUV+IR setup, the |b1⟩-|ϵ1⟩ resonance is
directly excited by the XUV from the ground state, when the |b1⟩ and |b2⟩ AISs are coupled
by the IR field. The coupling scheme is plotted in Fig. 1 schematically. The XUV field is
expressed in the envelope form as EX(t) = FX(t)eiωX t+F ∗

X(t)e−iωX t, but the IR field EL(t)
is kept in its numerical form because it may be a few-cycle pulse. The XUV envelope FX(t)
is a smooth function of time against the fast oscillation with the carrier frequency ωX . It
is in general complex and it contains any extra phase additional to the carrier phase.

Taking only the electric dipole terms in the light-matter interaction, the Hamiltonian
of the system is written as

H(t) = HA −D · E(t), (2)

where HA is the atomic Hamiltonian determined by the field-free atomic structure, D is
the dipole operator, and E(t) is the total external field. The off-diagonal terms of HA

in the current basis, Vb1ϵ1 = ⟨b1|HA|ϵ1⟩ and Vb2ϵ2 = ⟨b2|HA|ϵ2⟩, are responsible for the
autoionization. By solving TDSE with this Hamiltonian, the coupled equations for the
coefficients in Eq. (1) are obtained. For the system in concern, the following representations
and approximations are then made to simplify the model: (1) Standing wave representation
is taken for the basis set, so all the matrix elements in the Hamiltonian are real. The use of
such basis is conventional and does not impose any physical restriction. (2) The AISs are
assumed to be far above the ionization threshold compared with their widths, where the
scattered electrons have almost constant momentum across the AISs. As a consequence,
the atomic parameters can be viewed as constants estimated at the resonance frequencies,
i.e., Vb1ϵ1 = Vb1ϵb1 ≡ Vb1 , Dgϵ1 = Dgϵb1

≡ Dg1, and so on. This approximation is good in

many autoionizing systems; for example, the 2s2p(1P ) resonance in helium is 35 eV above
the binding energy compared to its width of 37 meV. (3) Rotating wave approximation is
applied to the XUV since its photon energy is roughly on resonance with the AISs within a
confined bandwidth. (4) By assuming that the continuum state coefficients evolve slowly in
time, we employ adiabatic elimination (AE) for them. With these assumptions, we arrive
at the self-contained equation of motion (EOM) for the bound part of the wavefunction,
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given by

iċg(t) =− FX(t)D̄gb1cb1(t)− i |FX(t)|2 jggcg(t), (3)

iċb1(t) =− F ∗
X(t)D̄gb1cg(t)− (δ1 + iκ1)cb1(t)−EL(t)Db1b2cb2(t), (4)

iċb2(t) =− (δ2 + iκ2)cb2(t)− EL(t)Db1b2cb1(t), (5)

where jgg ≡ π|Dg1|2 is the broadening of the ground state by the field, δ1 ≡ ϵe − ϵb1
and δ2 ≡ ϵe − ϵb2 are the detuning of the XUV to the AISs, Γb1 = 2κb1 ≡ 2π|Vb1 |2 and
Γb2 = 2κb2 ≡ 2π|Vb2 |2 are the resonance widths, and D̄gb1 ≡ Dgb1 − iπVb1Dg1 is the
composite dipole matrix element between |g⟩ and |b1⟩ consisting the direct and indirect
paths. Note that D̄gb1 is complex although the individual dipole matrix elements are real
in the standing wave representation. The Fano lineshape parameter q ≡ Dgb1/(iπVb1Dg1) is
determined exclusively by the atomic structure parameters D and V and already embedded
in the coupled equations. The bound part of the wavefunction is carried out without any
numerical treatment for the continuum coefficients. The required input parameters are the
V and D values which are totally determined by the atomic structure, and the external field
parameters. Up to this point, the model can deal with problems with long pulses where
their narrow bandwidths are viewed as energy points in the spectrum, and the wave packet
has negligible portion of the continuum states, as shown in Refs. [17–22].

With the use of ultrashort pulses, when the pulse length gets comparable to or even
shorter than the autoionization, the bandwidth covers an energy range comparable to or
wider than the resonance width. This means that the short pulse excites a considerable
portion of the continuum states around the AISs, and the evolving wave packet has to
include the continuum part. To this end, the continuum state coefficients are calculated by
bringing in the original coupled equations,

iċϵ1(t) =(ϵ1 − ϵg − ωX)cϵ1(t) + V1cb1(t)− F ∗
X(t)Dg1cg(t), (6)

iċϵ2(t) =(ϵ2 − ϵg − ωX)cϵ2(t) + V2cb2(t), (7)

where all the bound state coefficients therein have already been solved in Eqs. (3)-(5). The
recovery of the continuum state coefficients is an iteration process which “corrects” the zero-
th order solution that is only used in the AE. Note that the solution at each energy point
in Eqs. (6) and (7) is independent of other energy points, so the precision of the solution is
irrelevant to the energy range and the energy resolution taken in the computation. Up to
here the total wave function of this atomic system is calculated, where all observables can
be derived accordingly.

III. PHOTOEMISSION

For photoionoization events, PES, PAS, and photoion spectroscopy are all common
measurements. In PES, with various detection angles against the polarization direction,
the scattered electrons in momentum space are recorded. Let the excited part of the wave
packet in Eq. (1) be denoted by |ΨE(t)⟩. The momentum distribution of the detected
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scattered electrons can then be written as P (k⃗) =
∣∣∣⟨ψ(−)

k⃗
|ΨE(tf )⟩

∣∣∣2, where P (k⃗) is the

probability density in the momentum space, |ψ
k⃗
⟩(−) is the momentum eigenstate with the

incoming boundary conditions, and tf is the time of the detection, which should be very
large in the atomic timescale. The momentum eigenstates can be written in the coordinate
space as the expansion of the scattering partial waves, in the energy-normalized form of

ψ
k⃗
(r⃗) =

√
2

πk

1

r

∑
lm

ile−iηlul(kr)Y
m
l (r̂)Y m∗

l (k̂), (8)

where ul(kr) are the radial waves and Y
m
l are the spherical harmonics of angular momentum

l and magnetic quantum number m. By removing the azimuth dependence, P (k⃗) is given
in spherical coordinate by

P (ϵ, θ) =

∣∣∣∣∣∑
l

√
2l + 1

4π

eiηl

il
cϵl(tf )Pl(cos θ)

∣∣∣∣∣
2

, (9)

where ϵ = k2/2 is the kinetic energy, θ is the polar angle with regard to polarization, cϵl(tf )
are the final continuum state coefficients, and Pl(cos θ) are Legendre polynomials.

In the three-level autoionizing system, the two resonances dominate two different
partial waves, and their energy spectra can be simulated separately. An angular-integrated
spectrum is given by P (ϵ) =

∑
l |cϵl(tf )|2 where cϵl(t) is the corresponding continuum state

coefficients simulated as described in Sec. II. In principle, tf should be infinitely large when
all the dynamic processes are over. Practically, it is set after the external fields and must be
much larger than the decay lifetimes of the AISs, since the decay processes are exponential
without a definite end. For example, the 2s2p(1P ) AIS in helium has a lifetime of 17 fs, and
tf can be set 200 fs later than the end of the external field, at which time the wave packet
is finalized in the energy or momentum space [25]. For systems of longer decay lifetimes,
a technique to reduce the total calculation time is to project the wave packet right after
the end of the external field onto the atomic eigenstates, at which point the eigenstate
coefficients will not change anymore (except the regular phase rotation). This technique is
based on Fano’s configuration theory for autoionization [14] and was described in details in
Ref. [33].

For demonstration, we simulate the PES of the 2s2p(1P ) resonance (referred as 2s2p
hereafter) of helium where the “IR” pulse couples this resonance to the 2s2(1S) resonance
(referred as 2s2 hereafter). The 500 as XUV is weak and centered at 2s2p, which linearly
excites a broadband autoionizing wave packet. It is much shorter than the 17-fs decay
lifetime of 2s2p and instantaneously initiates the autoionizing wave packet. The coupling
laser pulse (wavelength is 540 nm, pulse length is 7 fs in FWHM, peak intensity is 1.5 ×
1012 W/cm2) is actually in the visible wavelength in order to resonantly couple the two
AISs. The time-delayed PES is plotted in Fig. 2. The time delay t0 is defined positive if the
XUV comes before the IR. In the spectrogram [Fig. 2(a)], the lineshape remains the same
for t0 < 0, but suddenly flips its shape from left to right when t0 increases to around 6 fs.
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FIG. 2: Time-delayed PES at the 2s2p resonance. (a) Spectrogram for time delays between -15
to 55 fs. (b) PES at t0 = 6 fs which displays a horizontally inverse image of the original Fano
lineshape additional to an overall reduction. The corresponding time delay is indicated in (a) by
the dashed black line. The original lineshape in the laser-free condition is shown in the background
for comparison.

When t0 further increases and becomes large compared to the 17 fs lifetime of 2s2p, the
resonance gradually returns to the original lineshape. The dramatic flipping at 6 fs can be
understood by the Rabi oscillation between the two AISs. At t0 = 6 fs, the total dressing
field after the XUV pulse has a pulse area of 2π, which means once 2s2p is pumped by
the XUV, the electrons therein go through one Rabi cycle through 2s2 and back to 2s2p,
where the phase of this oscillating part in the wave packet changes by π. This phase shift
has the same effect of changing the sign of q and making a mirror image of the lineshape.
At the same time, the signal strength drops because for such an autoionizing system, the
excited states decay to the continuum all the time, and the population is lost during the
Rabi oscillation. The PES for the 2s2(1S) resonance versus the time delay, which we do not
show here, also supports this conclusion [33]. The simulated result by this model compared
to a recent measurement [8] has been reported [33].
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IV. PHOTOABSORPTION

In the same XUV+IR coupling system, the measurement can also be made in PAS.
Attosecond transient absorption (ATA) [39] has been one of the most rapidly developing
fields in ultrafast optics. Other than the instrumental concerns and the experimental setup,
there are some advantages of the PAS over the PES measurements, such as the access to
both the ionized and the neutral species, and the higher energy resolution in spectrometers
up to 20 meV at 60 eV as demonstrated in the recent experiment [10]. In measuring
autoionizing systems, the lineshape observed in high precision for different time delays
would be especially informative of the wave packet dynamics.

In the following we introduce the calculation of PAS based on a given external field
and the induced total electronic dipole. The response function S(ω) is defined as the
probability density of the energy that the atomic system absorbs from the field [40]:

∆U =

∫ ∞

0
ωS(ω)dω, (10)

where ∆U is the total energy transfered from the field to the atomic system. Following the
Hamiltonian in Eq. (2), S(ω) is given by

S(ω) = −2Im
[
D̃(ω)Ẽ∗(ω)

]
, (11)

where D(t) is the total electric dipole moment of the atomic system, and the Fourier
transform is defined by f̃(ω) = 1√

2π

∫
e−iωtf(t)dt. The response function has the same

dimensionality of the PES probability density P (ϵ) presented in Sec. III. Both S(ω) and
P (ϵ) display the spectral lineshapes of Fano resonances.

For the autoionizing system described by in Eq. (1), the dipole moment D(t) is given
by

D(t) = eiωX tuX(t) + uL(t) + c.c., (12)

where the XUV and IR frequency components are separate and given by

uX(t) = Dgb1λ
∗c∗b1(t)cg(t)− iFX(t)jgg |cg(t)|2 , (13)

uL(t) = Db1b2c
∗
b2(t)cb1(t). (14)

Because of the separation of the XUV and the IR frequency components in Eq. (12), the
PAS can be simulated for only the XUV or IR part of the spectrum. In the current XUV+IR
scheme, the IR interacts only with the top two levels, while the overall excitation of these
levels is limited by the XUV intensity that is much weaker than the IR. As a consequence,
the absorption of IR is negligible compared with the IR pump in most cases in the sense of
pulse shaping, unless a very optically thick medium is present. The IR absorption in such
a scheme is discussed in Ref. [34], while we deal with only the XUV absorption here. The
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FIG. 3: Same as Fig. 2 but for PAS. The cyan color in (a) indicates the negative absorption, or
emission, induced by the dressing field. In (b), the spectrum at t0 = 6 fs shows an upside-down
image to the original Fano lineshape in the laser-free condition. Note that the peak of the Fano
profile is turned to an emission line by the dressing laser.

response function has a straightforward connection to the commonly used absorption cross
section, given by

σ(ω) =
4παωS(ω)∣∣∣Ẽ(ω)

∣∣∣2 , (15)

for the linear cases before the propagation effect comes in.
In Fig. 3 we show the simulated response function in the PAS result, for the same

system introduced in Sec. III. The spectra in Fig. 3 and Fig. 2 have the same dimensionality
and can be directly compared to each other. As seen in the figure, the overall dependence
on the time delay is almost the same as the PES result, except that there are some negative
signals at t0 = 6 fs at the resonance and in the fringes at larger delays above the resonance
energy. These negative values represent the emission of the XUV, which cannot be found in
typical EIT measurements. This extraordinary phenomenon can again be explained by the
Rabi oscillation as in the PES case. The original Fano lineshape represents the interference
between the dipole stored in the continuum electrons and the dipole stored in the bound
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FIG. 4: Same as Fig. 3 but for the longer (50 fs) dressing field. The spectrum at t0 = 15 fs is shown
in (b) where the Autler-Townes splitting is the largest.

electrons. At t0 = 6 fs, as the bound electrons go through the 2s2p-2s2-2s2p Rabi cycle,
they gain an additional π phase shift. It means that between the two interfering paths,
only the bound but not the continuum path changes. The field generated by the coherent
sum of the two dipole components, with one of them shifted phase by π, carries the spectral
pattern where the constructive and destructive parts of the interference swap. This results
in the upside-down lineshape and forms an emission peak at the resonance energy.

In order to elucidate how such an ultrafast three-level coupling differs from the typical
EIT system, we conduct an additional simulation with a 50-fs long dressing field. The pulse
length is considerably longer than the 17-fs decay lifetime of 2s2p. Fig. 4 shows the time-
delayed PAS of the XUV in this dressing field. The most obvious feature in the spectrogram
is the splitting of the absorption peak, whose separation distance changes with the time
delay. The separation reaches maximum at t0 = 15 fs as shown in Fig. 4(b). The separation
there of about 3.5 eV is the same as the Rabi frequency of the dressing field, which is
expected as the Autler-Townes doublet [41] in such an EIT scheme. As the dressing pulse
temporally shifts away from the XUV, the absorption profile returns to the single-peak
shape. It suggests that the whole XUV-excited wave packet “sees” a stable dressing field
most strongly at t0 = 15 fs, when the existence of the 2s2p within its lifetime is mainly
at the peak of the dressing pulse. This type of adiabatic control utilizes the time delay



VOL. 52 WEI-CHUN CHU, TORU MORISHITA, AND C. D. LIN 311

between the XUV and the IR to turn on or turn off the EIT effect and has been carried
out experimentally in Ref. [22].

V. PROPAGATION EFFECT

The linear absorption of light across a gas medium can be described by Beer’s law [42],
i.e.,

T (ω) = T0(ω) exp [−ρLσ(ω)], (16)

where T0(ω) and T (ω) are transmission spectra before and after the gas medium of number
density ρ and propagation length L. The absorption cross section σ(ω) represents the
rate of absorption which does not change along the path of light. On the contrary, in the
nonlinear regime, the absorption is strongly dependent on the instantaneous electric field,
and the cross section evolves over the distance where the light pulse reshapes itself. In such
cases, Maxwell equation has to be applied.

Similar to the consideration in Sec. IV, we focus on the propagation of the XUV
where the IR is assumed to propagate without change across the medium. Applying loosely
focusing condition which is typical in ATA spectroscopy, we assume that the electric field
is transverse to the pulse propagation in the forward z direction. Using the coordinate
transformation t′ = t− z/c, the Maxwell equation can be simplified to the first-order form
of

∂E(z, t′)

∂z
= − ρ

2cϵ0

∂D(z, t′)

∂t′
. (17)

At each spatial point, the total wavefunction and the dipole oscillation in time is calculated
in the given external field, which then determines the field at the next point, from the front
to the rear end of the medium. Taking only the XUV field into account, the envelope of
the XUV is propagated by

∂FX(z, t′)

∂z
= − ρ

2cϵ0

[
∂uX(z, t′)

∂t′
+ iωXuX(z, t′)

]
, (18)

where uX(t) represents the envelope of the XUV dipole, given in Eq. (13).
In Sec. IV, the emission peak of the XUV is induced by a precisely controlled dressing-

field. It is shown as the negative absorption in the response function, or equivalently, in the
single-atom absorption cross section. However, a negative absorption rate cannot sustain
itself physically in an actual medium, or it would become singular at certain spatial point.
Thus, it is interesting to simulate this emission peak and to study its behavior in the
medium with actual propagation effects. With the same helium system and the same
field parameters in Sec. III, we assume a gas medium of the pressure of 25 Torr at room
temperature, which is equivalent to the number density of 8×1017 cm−3. Simulation carried
out up to the propagation distance of z = 2 mm is shown in Fig. 5, where the general trend
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FIG. 5: Transmission spectra along the propagation distance in the medium for t0 = 6 fs and the
same field parameters used previously. (a) The propagation from z = 0 to 2 mm. (b) The spectra
at z = 1 and 2 mm. The emission peak persists in the propagation while the surrounding signal
decreases over the distance. The Fano lineshape produced at 2 mm in the laser-free case is plotted
as a reference. (c) The total transmitted signal within a 40 meV interval at the resonance energy
at z = 2 mm versus the time delay.

along the path and the detail spectral shapes at 1 and 2 mm are shown in Fig. 5(a) and
Fig. 5(b), respectively. It shows that in contrast to the Beer’s law, the emission part of the
propagating spectrum does not (and cannot) grow exponentially. Instead, it remains the
height along the propagation, while the background signal around it drops exponentially, as
clearly seen by the z = 1 and 2 mm spectra in Fig. 5(b). This remarkable case exemplifies
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the redistribution of the XUV photons controlled by the IR dressing pulse, while the total
XUV energy attenuates along the propagation in the medium regardless of the appearance
of the IR.

As shown in Fig. 3, in the single-atom calculation, a strong modulation of the emission
peak lies on the time delay of the laser pulse. In the macroscopic simulation here, in
order to emphasize this modulation at the resonance, we assume a spectrometer with the
energy resolution of ∆ϵ = 40 meV at the resonance position at 60.15 eV. By collecting
the transmitted XUV within this ∆ϵ interval, the total yield at the exit of the medium
(z = 2 mm) is plotted against the time delay in Fig. 5(c). As predicted by the single-atom
case, the strongest emission occurs at t0 = 6 fs, which is clearly higher than the incident
light, i.e., the XUV experiences a gain at the resonance frequency in the medium. As the
time delay moves away from this optimal value, the XUV starts to be absorbed. With
large temporal separation between the pulses, the level of absorption rises back to that
of the original Fano lineshape. The variation of the emission yield along the time delay,
specified by the 40-meV spectral window, shows a strong manipulation on a broadband
attosecond pulse, in both the energy domain and the time domain. Further discussions and
demonstrations for the intensity dependence is given in Ref. [35].

VI. CONTINUUM-CONTINUUM COUPLING

The IR coupling in the model illustrated in Fig. 1 is between the bound states for
taking only the first-order transition, where the coupling involving any continuum state is
neglected. However, if we widen the bandwidth of an ultrashort coupling pulse that covers
a continuum with a number of embedded bound states, the collective transition to the
continuum will increase, but the transition to the bound states will stay the same since it
is already confined by the resonances’ own widths. Consequently, neglecting the coupling
through continuum states, i.e., bound-continuum coupling and continuum-continuum (C-
C) coupling, is not appropriate once the pulse becomes shorter. To bring such coupling
into the model and to test its validity, we employ an ab initio two-active-electron (TAE)
TDSE calculation [43, 44] as a virtual experiment to calibrate the model. The TAE-TDSE
method describes the time evolution of the two-electron wavefunction in space in the nuclear
potential. It then projects the total wavefunction onto the eigenstate wavefunctions with
the correct scattering boundary conditions to obtain the energy spectrum for each partial
wave. To conduct a realistic calibration for the model, the size of the system in Sec.II
is further expanded so that each symmetry in the coupling possesses multiple AISs. The
coupling scheme is plotted in Fig. 6.

The total wavefunction of the system in Fig. 6 is given by

|Ψ(t)⟩ = e−iϵgtcg(t)|g⟩+ e−iϵet

[∑
m

cm(t)|m⟩+
∑
n

cn(t)|n⟩

+

∫
cϵ1(t)|ϵ1⟩dϵ1 +

∫
cϵ2(t)|ϵ2⟩dϵ2

]
. (19)
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FIG. 6: Schematics of the IR coupling between two groups of Fano resonances that are excited by
a XUV IAP. Both the bound and the continuum parts of the resonances are coupled by the IR.

To simplify the calibration with the TAE-TDSE, we limit the XUV intensity to avoid
second-order excitation. In such a condition, the ground state coefficient cg(t) = 1 is a
constant of time. By taking into account all the dipole matrix elements including the ones
involving continuum states and applying AE for the continuum, the coupled equations for
the bound states are

iċm(t) =− F ∗
X(t)D̄gm − (δm + iκm)cm(t)− EL(t)

∑
n

D̄mncn(t), (20)

iċn(t) =− iF ∗
X(t)EL(t)jgn − (δn + iκn)cn(t)− EL(t)

∑
m

D̄mncm(t), (21)

where

D̄gm ≡ Dgm − iπDgϵmVm, (22)

D̄mn ≡ Dmn − π2VmDϵmϵnVn − iπ(VmDϵmn +DmϵnVn) (23)

are the complex composite dipole matrix elements incorporating the continuum states.
All the atomic structure parameters in Eqs. (20)-(23) are labelled in the same way as in
the three-level system in Sec. II but with the |m⟩ and |n⟩ states replacing |b1⟩ and |b2⟩
respectively. One can see that the IR coupling with the continuum states comes into the
terms of Dϵmϵn , Dϵmn, and Dmϵn in Eqs. (22) and (23) and thus contributing to Eqs. (20)
and (21).

To retrieve the continuum state coefficients by iteration, all continuous dipole matrix
elements have to be kept in the original coupled equation. With mutual coupling terms
between the two background continua, the final continuum state coupled equations are
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given by

iċϵ1(t) =− F ∗
X(t)Dgϵe − δϵ1cϵ1(t) +

∑
m

Vmcm(t)− EL(t)

[∑
n

D̄ϵ1ncn(t) + αϵ1(t)

]
,

(24)

iċϵ2(t) =− iF ∗
X(t)EL(t)jgϵ2 − δϵ2cϵ2(t) +

∑
n

Vncn(t)− EL(t)

[∑
m

D̄mϵ2cm(t) + αϵ2(t)

]
,

(25)

where

D̄ϵ1n ≡ Dϵ1n − iπDϵ1ϵnVn, (26)

D̄mϵ2 ≡ Dmϵ2 − iπVmDϵmϵ2 , (27)

αϵ1(t) ≡ πDϵ1ϵ2 ċϵ2(t)|ϵ2=ϵe , (28)

αϵ2(t) ≡ πDϵ1ϵ2 ċϵ1(t)|ϵ1=ϵe . (29)

For each value of ϵ1, the evolution of cϵ1(t) has the coupling term of cϵ2(t) only at ϵ2 = ϵe,
which means all the ϵ2 continuum states together have a collective effect approximated by
αϵ1(t), and the same applies to cϵ2(t) too. The α functions are evaluated by Eqs. (28) and
(29) with the c(t) coefficients calculated by Eqs. (24) and (25) without the α functions
themselves, i.e., they are added iteratively. These terms minimize the numerical burden
and consider the C-C coupling at the same time. With the complete wavefunction, the PES
for the two continua are P1(ϵ) = |cϵ1(tf )|2 and P2(ϵ) = |cϵ2(tf )|2 as explained in Sec. III.

In the following we take the same example system, the 2s2p resonance in helium, for
demonstration. The TAE-TDSE calculation is taken as a virtual experiment to calibrate
the present model. With the XUV (central frequency is resonant with 2s2p, FWHM pulse
length is 690 fs, peak intensity is 109 W/cm2) and the laser (wavelength is 540 nm, FWHM
pulse length is 4 fs, peak intensity is 5 × 1011 W/cm2) pulses, both with zero carrier-
envelope phase, the TAE-TDSE result shows the first three partial waves–s, p, and d–are
the dominant ones in the PES. Thus, in the model, a third continuum is added alongside
Eqs. (24) and (25), and all the atomic parameters are adjusted to fit the PES by TAE-
TDSE. In Fig. 7, the three dominant partial waves for zero delay between the two pulses
are shown in the PES, which achieve a good agreement between the two calculations. The
original Fano lineshape, displayed as a reference, is calculated as the p-wave PES in the
laser-free condition. With the laser turned on, the strength of the p wave drops down,
while both the s and d waves rise up, showing the laser transition from the 2s2p resonance
and its background to other symmetries. The two s-wave resonances, identified as 2s2

and 2p2(1S) (referred as 2p2 hereafter), are well reproduced by the model. Certain signal
depletion appears in the model relative to the TAE-TDSE calculation as the result of the
laser ionization, which is not considered by the model due to the lack of reliable treatment
for strong-field ionization so far.

In Fig. 7, the s-wave PES has a flat signal strength between 2s2 and 2p2. Considering
the laser bandwidth of about 1 eV counted after the XUV excitation, the middle part of this
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FIG. 7: PES for the s, p, and d partial waves for overlapping XUV and laser pulses (t0 = 0)
calculated by TAE-TDSE and the present model. The p wave in the laser-free condition calculated
by TAE-TDSE is also plotted as the original Fano lineshape.

flat signal must be the contribution by the C-C transition from the background parts of the
p wave. To draw a detail account of the C-C coupling, we plot the s-wave PES with various
time delays in Fig. 8. At t0 = 0, the XUV is on top of the maximum field of the laser. As
seen in the figure, once the laser lags behind the XUV, as shown at t0 = 0.3 fs, the signal
between 2s2 and 2p2 decreases significantly to about half of its original strength. As the
laser lags more, the signal further decreases, but the speed slows down, until at t0 = 0.5 fs
the signal drops to nearly zero. Meanwhile, the 2s2 and 2p2 resonance peaks stay strong
and are just slightly changed by the time delay. This contrast between the background and
resonance parts of the signal suggests that the C-C coupling by the laser only happens at
the beginning of the XUV excitation. Once the autoionizing wave packet is formed by the
XUV excitation, the bound state electrons and the photoelectrons are all spatially near the
atomic core. The photoelectrons, represented by the continuum states, can thus be coupled
by the laser and transferred to other symmetries at this moment. However, if the XUV
overlaps the zero field of the laser, the photoelectrons are scattered far away from the core
and free from the laser coupling. In principle these “free” electrons are still controlled by
the laser through streaking, but in the current case the intensity is low enough to neglect
streaking. This observation supports the claim that the C-C coupling is important in a very
short period after such a broadband wave packet is formed, which contradicts the common
assumption that the C-C coupling is negligible in laser-coupled systems.
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VII. CONCLUDING MARKS

We have reviewed the few-level model for the autoionizing wave packet excited by an
XUV IAP and dressed by an intense dressing field. For the simplest case, the three-level
model is described where the total wavefunction, including the broadband continuum com-
ponents, is constructed. Taking the resonantly coupled 2s2p(1P ) and 2s2(1S) resonances
in helium as an example, the PES and PAS are simulated, where the spectral features are
manipulated by the intensity and time delay of the IR and analyzed by the Rabi oscillation
between the resonances. By taking into account the propagation effect, with specific dress-
ing field parameters, an emission peak of the XUV at the resonance energy can be stablized
in the medium in the millimeter distance scale, which demonstrates an ultrafast control
over an attosecond pulse. In a more complex model where multiple resonances and the
coupling with continuum states are considered, the calibration of the model by an ab initio
calculation suggests that the continuum-continuum coupling has an essential contribution
in the ultrafast XUV+IR scheme, especially at the beginning of the photoionization.

Attosecond light sources have renewed the interests in autoionizing systems, where
certain recent experiments have been carried out beyond the scope of this review, such as
the autoionization in molecular Rydberg states [45], the two-photon coupling between the
AISs through an intermediate state [46], and continuous shift of the asymmetry of Fano
resonances by an intense laser field [10]. With the rapid ongoing development, the demand
for insightful and effecient models are expected to keep rising.
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