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Laser-assisted-autoionization dynamics of helium resonances with single attosecond pulses
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The strong coupling between two autoionizing states in helium is studied theoretically with the pump-probe
scheme. An isolated 100-as XUV pulse is used to excite helium near the 2s2p(1 P ) resonance state in the
presence of an intense infrared (IR) laser. The laser field introduces strong coupling between 2s2p(1 P ) and
2p2(1 S) states. The IR also can ionize helium from both autoionizing states. By changing the time delay between
the XUV and the IR pulses, we investigated the photoelectron spectra near the two resonances. The results are
used to explain the recent experiment by Gilbertson et al. [Phys. Rev. Lett. 105, 263003 (2010)]. Using the same
isolated attosecond pulse and a 540-nm laser, we also investigate the strong coupling between 2s2p(1 P ) and
2s2(1 S) by examining how the photoelectron spectra are modified versus the time delay and the possibility of
observing Autler-Townes doublet in such experiments.

DOI: 10.1103/PhysRevA.84.033426 PACS number(s): 32.80.Zb, 32.80.Fb

I. INTRODUCTION

Quantum coherence is essential to the understanding and
control of the dynamics in a quantum system. With the ad-
vances of experimental techniques and technologies, extreme
ultraviolet (XUV) attosecond pulse trains (APT) and single
attosecond pulses (SAP) have been produced through the
high-order harmonic generation (HHG) process by exposing
atoms to intense infrared lasers. Since the natural time scale
of the electronic motion of valence electrons in atoms and
molecules is in the order of hundreds of attoseconds, these
pulses can be used to manipulate or control electron dynamics
at the attosecond level [1]. For this purpose, the pump-
probe scheme is used experimentally where the dynamics of
the system is investigated by varying the time delay between
the pulses. However, existing XUV SAP and APT are too
feeble to be used for XUV-pump-XUV-probe measurements.
Instead, most of the experiments have been carried out
using the weak XUV-pump with an intense IR-probe pulse.
Rigorously speaking, the IR can be considered as a probe only
if it is applied after the XUV pump ends. In such a case, the
electron wave packet generated by the APT or the SAP is
probed. In most experiments, however, measurements are also
made where the XUV and IR overlap in time. Since the IR is
much stronger than the XUV, such measurements are better
understood as laser-assisted photoionization.

In XUV+IR experiments, the interaction of the XUV+IR
field with the target atom is a nonlinear process. To treat
such problems theoretically, the brute-force numerical solution
of the time-dependent Schrödinger equation (TDSE) has
been carried out by many groups where the target atom is
treated within the single electron approximation. For APT+IR,
Floquet approach [2] has also been employed as well. With
much effort, TDSE calculations have been performed for two-
electron helium atoms and two-electron hydrogen molecules
and these were compared with measurements [3–5]. Still,
simplified theoretical models are highly desirable in order to
acquire a better understanding of the dynamics. These models,
clearly, have to depend on the physical systems on hand.

To be specific, we will focus on helium atom where many
experiments have been carried out.

The first type of XUV+IR experiments used APT where the
photon energy runs from below to above the single ionization
threshold of helium [6–10]. Spectra of electrons or ions
measured and calculations based on TDSE and Floquet theory
have been reported [6,8]. In the limit of nonoverlapping APT
and IR, a simplified theory has been reported where the aim
was to extract the electron wave packet generated by the APT
[11]. Alternatively, photon spectra can also be measured [12].
In this case, the effect due to propagation in the medium has to
be considered [13]. As the energy of the XUV photon increases
beyond the single-ionization threshold, it enters a structureless
spectral region (about 25 to 55 eV). In this case, the addition
of an intense IR to the XUV is to shift the momentum of
the continuum electron along the polarization direction of
the IR laser, resulting in the “streaking” of photoelectrons
where the energies depend on the vector potential of the
IR laser at the time of the electron emission. A “streaking”
theory based on the strong-field approximation (SFA) [14]
has been widely used. This theory also forms the basis of the
frequency-resolved optical gating for complete reconstruction
of attosecond bursts method [15] for extracting the pulse
duration of an SAP. At a still-higher photon energy of 60 eV, the
XUV alone will reach the spectral region where doubly excited
states of helium are located. In this paper, we will focus on
this energy region and consider the dynamics of the doubly
excited state generated by the XUV pulse in the presence of
an IR pulse at different delay times.

Doubly excited states have been widely studied using
synchrotron radiations since the 1960s [16,17]. These are
autoionizing states where the lifetime of a state is typically of a
few to tens of femtoseconds. These lifetimes are deduced from
the measured spectral width; thus high-precision spectroscopic
measurement is needed. With the emergence of SAP, the
lifetime of an Auger resonance was first measured in the
time domain and analyzed by the XUV+IR streaking theory
in 2002 [18]. However, the evolution of the spectral shape
of a resonance state has not been determined so far in the
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time-domain measurements, which, in principle, can be in-
vestigated with attosecond pulses. In fact, the autoionization
theory was formulated in the energy domain by Fano [19].
Recently, we addressed this issue [20] and an experimental
scheme was proposed. The scheme, however, requires an
attosecond XUV pump to create the resonance and an
attosecond XUV probe to project out the time evolution of the
resonance. Such measurement is not possible yet. Thus, for
the time domain measurements so far, doubly excited states
still have to be “probed” using an IR pulse. For an isolated
Fano resonance generated in a combined XUV+IR pulse, the
problem has been examined by Wickenhauser et al. [21]. A
simpler model was proposed by Zhao et al. [22] based on SFA.

An XUV+IR experiment on helium doubly excited states
has been reported by Loh et al. [23], where a 30-fs XUV
pulse was used to excite the 2s2p(1P ) doubly excited state
in the presence of a 42-fs IR laser. The absorption spectra
near the 2s2p resonance were measured versus the time delay
between the pulses. The result was then interpreted by a
theory that includes the strong coupling between the 2s2p

and 2p2(1 S) states by the IR. In this experiment, the pulse
duration of the XUV was longer than the lifetime of the 2s2p

autoionizing state, i.e., the bandwidth of the light was narrower
than the resonance width. Thus, the continuum electrons in
a measurement did not have a meaningful “distribution” for
such a narrow bandwidth. A single pump could not reveal
any significant spectroscopic features; instead, sequential
measurements were made where the detuning of the XUV was
controlled and scanned through an energy range. The scanned
spectra were able to exhibit the autoionization modified by the
time-delayed IR, thus providing the temporal information of
the system partially. More recently, an 100-as SAP was used by
Gilbertson et al. [24] to excite helium in the presence of a 9-fs
IR pulse. The central energy of the excitation is at the 2s2p

resonance, and the photoelectron spectra near this resonance
versus time delay were reported. The result was interpreted
based on the theory of Zhao et al. [22] from which the decay
lifetime of 2s2p was retrieved. However, the spectral shape of
the resonance was not analyzed due to the limited resolution
of 0.7 eV of the electron spectrometer. In contrast to Ref. [23],
the interpretation was made by use of the streaking model of
Zhao et al. [22] only. Since the IR wavelength used in the two
experiments are about the same, the role of strong coupling
between the 2s2p and 2p2 states in this experiment should be
addressed. This is the goal of the present paper.

The present analysis limits the Hilbert space to including
only the two autoionizing states, 2s2p and 2p2, and the ground
state. While the XUV can populate other higher doubly excited
states, they are weaker in the spectrum and are easily ionized by
the IR. Governed by the detuning of the 9-fs IR, only the 2s2p

and 2p2 states are strongly coupled. The dynamics of such
a system is then studied with a theory generalized from the
standard three-level system formulated earlier [25–28]. To be
specific, we develop a model for the IR-dressed autoionization
of the 2s2p resonance in helium excited by an SAP, where
the IR strongly couples the 2s2p and 2p2 resonances and also
ionizes both doubly excited states. Both effects by the IR have
to be included in order to explain the observed electron spectra
reported in Ref. [24]. After achieving good agreement with
the experiment, we further investigate the case where 2s2p

and 2s2(1 S) are coupled by changing the laser wavelength
to 540 nm. The latter state has a higher binding energy
such that it is not ionized by the laser. Such measurements
would be closer to the standard electromagnetically induced
transparency (EIT) experiment [29,30]. We will look for
the presence of the Autler-Townes doublet [31] which are
routinely generated by three-level systems with long pulses.

In Sec. II, the model system is defined and the method is
introduced. In Sec. III, we show and analyze the results of
the two cases, with laser wavelengths λL = 780 and 540 nm,
respectively. For λL = 780 nm, our calculation is compared
with the available experiment [24] and with the streaking
model based on the SFA model of Zhao et al. [22]. For
λL = 540 nm, the results are analyzed, and the possible
experimental realization are discussed. In Sec. IV, we give
the conclusion. Atomic units (a.u.) are used in Sec. II. In the
rest of the paper, electron volts (eV) and femtoseconds (fs)
are used for energy and time, respectively, unless otherwise
specified.

II. THEORY

A. General description of the model system

Consider an atomic system with ground state |g〉 and two
doubly excited states |a〉 and |b〉. The dipole transition is
allowed between |g〉 and |a〉 and between |a〉 and |b〉. Suppose
their energy levels and the external fields are arranged in a
way such that the XUV is near resonance between |g〉 and
|a〉 and the laser is near resonance between |a〉 and |b〉.
The total time-dependent wave function of the system can
be approximately written as

|�(t)〉 = e−iEgt cg(t)|g〉

+ e−iEXt

[
da(t)|a〉 +

∫
dE1 (t)|E1〉dE1

]

+ e−iELt

[
db(t)|b〉 +

∫
dE2 (t)|E2〉dE2

]
, (1)

where Eg is the ground-state energy; EX ≡ Eg + ωX and
EL ≡ Eg + ωX + ωL are the “pumped energies” with respect
to the photon energies ωX and ωL, where X is for XUV and L is
for laser; and |E1〉 and |E2〉 are the continua with respect to |a〉
and to |b〉. The fast oscillating parts in the wave function have
been factored out and the c(t) and d(t) functions are assumed
to vary slowly with time. By convention, we use symbol c(t)
for coefficients if the expansion is with respect to eigenstates,
and symbol d(t) is used when the expansion is in terms of
configurations (not eigenstates). The total Hamiltonian of the
atomic system in the external fields is

H (t) = HA + HX(t) + HL(t), (2)

where HA is the atomic Hamiltonian and HX(t) and HL(t)
represent the interactions of the XUV and laser fields with
the atom, respectively. In the photon energy range in consid-
eration, the interaction with the field is given by the electric
dipole transition. Equation (2) provides the total Hamiltonian

033426-2



LASER-ASSISTED-AUTOIONIZATION DYNAMICS OF . . . PHYSICAL REVIEW A 84, 033426 (2011)

to solve the time-dependent Schrödinger equation for the wave
function in Eq. (1), i.e.,

i
d

dt
|�(t)〉 = H (t)|�(t)〉. (3)

The fields are assumed linearly polarized in the same direction.
The electric fields are in the form of

E(t) = 2F (t) cos(ωt) = F (t)(eiωt + e−iωt ), (4)

where 2F (t) is the pulse envelope. The present model works
for arbitrary pulse envelopes; however, we limit the envelope
to cosine-square shape in the calculation, i.e.,

F (t) = F0 cos2

(
t − t0

τ

)
for − πτ

2
< t − t0 <

πτ

2
(5)

and F (t) = 0 anywhere else, where t0 is the peak time. For such
a pulse, the pulse duration is πτ/2.75, and F0 is related to the
peak intensity I0 by I0 = 4F 2

0 . In this paper, the pulse duration
is defined by the full width at half maximum (FWHM) of the
intensity envelope. The time delay between the two pulses is
define as the time of laser peak subtracted by the time of XUV
peak, so it is positive if the peak of the XUV appears before
the IR. By convention, in this paper, the XUV peak and the IR
peak are placed at t = 0 and t = t0, respectively, so the time
delay is t0.

Note that the basis functions for the autoionizing states
in Eq. (1) are not the eigenstates of the atomic Hamiltonian
HA. In the basis space of Eq. (1), the diagonal terms of the
Hamiltonian are just the energies Eg , Ea , E1, Eb, and E2. The
off-diagonal terms are

〈E1|H (t)|a〉 = Va (6)

〈E2|H (t)|b〉 = Vb, (7)

〈a|H (t)|g〉 = −DagFX(t)e−iωXt , (8)

〈E1|H (t)|g〉 = −D1gFX(t)e−iωXt , (9)

〈b|H (t)|a〉 = −DbaFL(t)e−iωLt , (10)

〈E2|H (t)|a〉 = −D2aFL(t)e−iωLt , (11)

where the D are the dipole matrix elements and V the transition
amplitudes of configuration interaction (CI). These terms are
schematically plotted in Fig. 1.

For the process in concern, additional simplifications are
made. Helium atom is taken as a prototype, where |g〉 is
1s2(1S), |a〉 and |b〉 are 2s2p(1P ) and 2p2(1S), and |E1〉
and |E2〉 are 1sεp(1P ) and 1sεs(1S), respectively. Referring
to Fig. 1, since the IR coupling is a one-electron dipole
operator, the coupling between 2p2(1S) and 1sεp(1P ) is zero
to the first order. The coupling between the two continuum
states by the dipole operator can also be neglected since the
IR is not absorbed by the continuum electron. We also use
the rotating-wave approximation such that only the resonant
transitions are considered. Furthermore, the matrix elements
involving continuum states |E1〉 and |E2〉 are assumed energy
independent, which means D and the Fano parameters, � and
q, are constant values estimated at the resonances. This is a
good approximation when the resonance energy is high enough
above the threshold relative to its width so that the continuum
only varies slightly across the resonance. In Eqs. (6)–(11),
the basis functions are real by convention (the continua are

FIG. 1. (Color online) Diagram for off-diagonal terms of the
Hamiltonian in the configuration basis. The double arrows represent
the transitions between the basis vectors; the red ones represent the
dipole transitions, the green ones represent the CIs responsible for
autoionization, and the gray dashed ones are neglected in the model.

standing waves) so all the D and V are real. In this model,
all the atomic parameters (D, E, �, and q) are taken from
experiments or from calculations in the literature. These
parameters are determined by the atomic structure which is
irrelevant to the development of our model.

B. Three-state model

Under the approximations outlined above, a system of cou-
pled equations for all the coefficients appearing in Eq. (1) are
obtained. Considering the conservation of the total probability
of the wave packet, the continuum-state coefficients change
with time much more slowly than the bound-state coefficients.
Thus, dE1 (t) and dE2 (t) are adiabatically eliminated by as-
suming their time derivatives are zeros [27,28]. This allows
us to reduce the calculation to include only the bound states.
Solving the coupled equations is then numerically feasible. We
now have

iċg(t) = −i
γg(t)

2
cg(t) + λaFX(t)da(t), (12)

iḋa(t) = λaFX(t)cg(t) −
[
δX + i

�a + γa(t)

2

]
da(t)

+ λbFL(t)db(t), (13)

iḋb(t) = λbFL(t)db(t) −
(

δX + δL + i
�b

2

)
db(t), (14)

where λa ≡ −Dag(1 − i/qa) and λb ≡ −Dba(1 − i/qb) are
the newly defined complex dipole matrix elements which
include the route through the continua. The laser-induced
broadening γg(t) and γa(t) are defined by

γg(t) ≡ 2π |D1gFX(t)|2, (15)

γa(t) ≡ 2π |D2aFL(t)|2, (16)

the detuning of the pulses are δX ≡ ωX + Eg − Ea

and δL ≡ ωL + Ea − Eb, and the Fano parameters are
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�a ≡ 2π |Va|2, �b ≡ 2π |Vb|2, qa ≡ Dag/(πVaD1g), and qb ≡
Dba/(πVbD2a). The ac Stark shifts vanish, i.e.,

P

∫ |D1gFX(t)|2
EX − E1

dE1 = P

∫ |D2aFL(t)|2
EL − E2

dE2 = 0 (17)

because D1g and D2a are constant of energy, where P means
the principal part.

With any given set of atomic parameters, field parameters,
and initial conditions, Eqs. (12)–(14) uniquely determine the
bound-state part of the total wave function regardless of
the continua. In numerical calculations, we propagate these
coefficients using the Runge-Kutta method, with the initial
conditions cg(ti) = 1 and da(ti) = db(ti) = 0, i.e., the system
is in the ground state at initial time ti before the pulses
arrive. Note that the model described above retrieves only the
bound-state part of the total wave function. It has been applied
successfully for long pulses where the photoelectron distribu-
tion in each single measurement is disregarded [23,26–28].
In the present study, however, a broadband XUV pumps
the electrons to the continuum and to the bound state alike;
missing the continuum coefficients means missing the essential
information of the total wave function. In the following, we aim
to extend the model to recover the dynamics of the complete
system for short-pulse cases.

C. Continuum states

The original coupled equations for the continuum states
before the adiabatic elimination are

iḋE1 (t) =−D1gFX(t)cg(t) +Vada(t) + (E1−EX)dE1 (t) (18)

iḋE2 (t) =−D2aFL(t)da(t) +Vbdb(t) + (E2−EL)dE2 (t). (19)

Assuming ḋE1 (t) = ḋE2 (t) = 0 in Eqs. (18) and (19), the ap-
proximate dE1 (t) and dE2 (t) have singularities at E1 = EX and
at E2 = EL, respectively. When plugged into the bound-state
coupled equations, these singularities are handled properly
with contour integrations. After solving Eqs. (12)–(14), the
bound-state coefficients cg(t), da(t), and db(t) are known
functions of time. We then return to the full version of the
continua in Eqs. (18) and (19) to retrieve dE1 (t) and dE2 (t),
again by the Runge-Kutta propagation over time, with the
initial conditions dE1 (ti) = dE2 (ti) = 0. The new dE1 (t) and
dE2 (t) functions generated by Eqs. (18) and (19) are the next
iteration and better solutions to the previous ones.

After the pulses are over, the system may still change due to
autoionization. For an arbitrary set of bound- and continuum-
state coefficients, the photoelectrons evolve to a final energy
distribution after about 10 times the decay lifetime or so [20].
To simulate this measurable photoelectron spectrum, we have
to project the total wave packet that has propagated for a
long time onto the partial waves of interest; equivalently,
taking the |a〉-|E1〉 resonance, for example, the spectrum is
proportional to |dE1 (tf )|2 as tf → ∞. The probability density
of the continuum wave function, P (E1) ≡ |dE1 (tf )|2, is called
photoelectron profile or simply profile hereafter in this paper.
Numerically, tf is taken when |dE1 (t)|2 no longer changes.
In the case concerning the 2s2p(1P ) resonance in helium,
the decay lifetime is 17 fs, so the final spectrum can be
safely taken at about tf = 200 fs. Note that P (E1) has the
dimension of probability per unit of energy, and the integral

of P (E1) over energy represents the total probability of the
system being in the |E1〉 continuum. The conservation of total
probability can be used to numerically check the convergence
of calculation. The continuum states calculated this way
have some advantages. First, each of them can be turned on
separately once the bound-state calculation is done. Second,
the energy range and energy mesh can be arbitrarily chosen
without lowering the accuracy because dE1 (t) and dE2 (t) are
calculated independently for each energy point.

In the present work, we only concern ourselves with the final
photoelectrons reaching the detector. However, if one wants
to know the evolution of electrons in real time before the end
of decay, the retrieval of |dE1 (t)|2 and |dE2 (t)|2 as functions of
energy and time will be the answer, instead of P (E1) and P (E2)
as just functions of energy. The measurement of this short-time
behavior was proposed using an additional high-energy short
pulse to ionize the inner electron [20].

D. Eigenstates

The atomic eigenstates near a resonance are solved in terms
of the corresponding bound state and background continuum
by Fano’s theory [19]. This leads us to express the total wave
function in eigenstate basis in the general form of

|�(t)〉 = e−iEgt cg(t)|g〉 + e−iEXt

∫
c

(a)
E (t)

∣∣ψ (a)
E

〉
dE

+ e−iELt

∫
c

(b)
E′ (t)

∣∣ψ (b)
E′

〉
dE′, (20)

where the superscripts (a) and (b) indicate the |a〉-|E1〉 pair
and the |b〉-|E2〉 pair, respectively. The eigenstates we refer
to are the eigenstates of atomic Hamiltonian HA, so they are
stationary only in the absence of field. In the following, we
will discuss only the subspace spanned by |a〉 and |E1〉 in
details, while the same principles apply to |b〉 and |E2〉. In the
meantime the superscript (a) is omitted.

The solutions for an eigenstate of energy E in configuration
basis is

|ψE〉 = μE|a〉 +
∫

νEE1 |E1〉dE1, (21)

where the coefficients are

μE = sin θE

πVa

(22)

νEE1 = sin θE

π (E − E1)
− cos θEδ(E − E1), (23)

where

θE ≡ − tan−1

(
�a/2

E − Ea

)
. (24)

The conversion between Eq. (1) and Eq. (20) means that for
the |a〉 resonance,∫

cE(t)|ψE〉dE = da(t)|a〉 +
∫

dE1 (t)|E1〉dE1. (25)

Starting with Eq. (21) and Eq. (25), with some algebra, the
cE(t) coefficients are

cE(t) = sin θE

πVa

da(t) − (cos θE − i sin θE)dE1 (t)|E1=E, (26)

033426-4



LASER-ASSISTED-AUTOIONIZATION DYNAMICS OF . . . PHYSICAL REVIEW A 84, 033426 (2011)

which enables us to calculate the detected photoelectron
spectrum P (E) ≡ |cE(tf )|2 as tf → ∞. This spectrum defined
here will reach the same result as P (E1) defined in Sec. II C,
but just from a different calculation procedure.

The profile |cE(t)|2 evolves in a manner that differs from
that of |dE1 (t)|2. As pointed out in Sec. II C, |dE1 (t)|2 evolves
until the end of the decay, and |cE(t)|2 evolves until the field is
over. In a typical case where the field ends much earlier than
the end of the decay, it is more efficient to calculate the final
|cE(tf )|2 than the final |dE1 (tf )|2. Moreover, in Eq. (26), for
a point in time and in energy (t,E), the coefficient cE(t) is
calculated by a simple algebra with the da(t) and dE1 (t)|E1=E

of just the same (t,E); there is no integral over energy nor
propagation over time to carry out cE(t) once da(t) and
dE1 (t)|E1=E are known. In other words, including cE(t) in the
calculation requires very little extra effort. Summing up these
facts, for the purpose of retrieving the electron spectra, it is
advantageous to adopt P (E) = |cE(tf )|2 instead of keeping the
form of P (E1) = |dE1 (tf )|2. We have come to the conclusion
that for the present system and setup, the optimal workflow is
in the consecutive order of bound states, continuum states, and
eigenstates, all of which are calculated in the physical time
until the field vanishes.

For the subspace spanned by |b〉 and |E2〉, the eigenstate
coefficients are constructed by db(t) and dE2 (t) in the same
way but with different parameters. Now both c

(a)
E (t) and c

(b)
E (t)

are obtained, and we can fully build the total wave function in
eigenstates basis as shown in Eq. (20).

III. RESULTS AND DISCUSSIONS

A. Laser wavelength of 780 nm

1. Calculation and analysis

We first apply the model to the case where the laser couples
2s2p(1 P ) and 2p2(1 S) in helium with the experimental setup
reported by Gilbertson et al. [24]. The two doubly excited
states autoionize to 1sεp(1 P ) and 1sεs(1 S), respectively. The
measured quantity is the electron spectrum, corresponding
to P (E) = |cE(tf )|2 in the model introduced in Sec. II D,
where tf is taken after the field vanishes. For the XUV pulse,
the photon energy is 60 eV and the duration is 100 as; the
bandwidth is 20 eV, which is much wider than the width of
2s2p and viewed as a flat background in spectrum near the
resonance. The XUV transition from the 1s2(1 S) ground state
to 2s2p is nearly resonant, and we conveniently set δX = 0.
In principle, such a pump pulse can initiate other 2snp, 2pns,
and 2pnd states which should all be included in the total wave
function. (For more accurate description of doubly excited
states, see Lin [32].) Nonetheless, those higher states have
longer lifetimes, exhibiting less dynamics in the time scale in
our scheme; furthermore, their resonance widths are narrow
and difficult to measure with typical electron spectrometers.
Thus, we treat 2s2p as the only |a〉 state in Eq. (1), while
1sεp is |E1〉. The Fano parameters of the 2s2p resonance
are experimental values taken from the literature [33], where
Ea = 60.15 eV, �a = 37 meV, and qa = −2.75. The XUV is
weak and in the linear regime so its intensity does not affect the
spectra other than an overall factor. The peak XUV intensity
is assumed IX = 1010 W/cm2.

The laser pulse is a 9-fs IR pulse with wavelength λL =
780 nm and peak intensity IL = 7 × 1011 W/cm2. With 1.6-eV
photon energy, the IR field couples 2s2p and 2p2 at 62.06 eV,
where δL = −0.4 eV. The atomic parameters �b = 5.9 meV
[34] and Dba = 2.17 a.u. [23] are taken from literature. The
bound-free dipole matrix element D2a responsible for the
transition from 2s2p to 1sεs is very small because it is a second
order (satellite) transition and requires electron correlation,
while Dba between 2s2p and 2p2 is a first-order transition via
〈2s|D|2p〉. The parameter qb, representing the ratio of Dba to
D2a , is thus very large; it is set qb = 1000. Note that when
|q| � 1, the Fano shape appears as a symmetric peak, and the
sign of q is insignificant.

In order to understand the dynamics controlled by the laser,
we evaluate the generalized Rabi frequency defined by

�(t) ≡
√

|DE(t)|2 + |δ|2. (27)

When the detuning is large, the Rabi frequency is higher;
however, the amplitude of the oscillation is lower, i.e., the
population does not fully swing to the other coupled state. In
our system and setup, � = 0.43 eV between 2s2p and 2p2

at the laser peak, corresponding to 9.6-fs period. For the two
doubly excited states, the binding energies of 2s2p and 2p2

are 5.3 and 3.3 eV, which are low enough so their ionizations
are quick, especially the latter one. We calculate the ionization
rates for both states using the model developed by Perelomov,
Popov, and Terent’ev [35], referred by the PPT model hereafter,
with the high-intensity correction introduced in Ref. [36]. The
empirical parameters in our PPT calculation are obtained by
fitting our result to the experiment, which will be discussed
in Sec. III A 2. The calculated peak rates for 2s2p and 2p2,
in units of energies, are 5.4 meV and 0.46 eV, comparable
to their resonance widths 37 meV and 5.9 meV, respectively.
To incorporate these ionization rates to our coupling model
in Eqs. (12)–(14), the widths are broadened by �′

a,b(t) =
�a,b + Wa,b(t), where Wa(t) and Wb(t) are the time-dependent
ionization rates for 2s2p and 2p2, respectively. Note that for
the dynamics we have considered so far, on the one hand, the
coupling and the ionization of resonances exist only in the
presence of laser field; on the other hand, the autoionization
processes are determined exclusively by the atomic structure,
whose time scale cannot be changed externally.

The probabilities of the 2s2p and 2p2 bound states are
presented in Fig. 2 as they propagate in time. Although the
bound states are not directly measured in this pump-probe
scheme, the analysis therein helps reveal the physics behind
the whole time-dependent process. We will analyze the bound-
state propagation and the resonance profiles in the following
at the same time.

The photoelectron profiles of the 2s2p resonance for
t0 = −10 to 50 fs are shown in Fig. 3. If the laser field is
absent, the dynamics of the system after the pump will be
nothing more than the autoionization of 2s2p, and the detector
will see an original Fano line shape as seen in the absorption
spectrum in synchrotron radiation experiment. When a laser
is added very early, e.g., t0 = −10 fs, the spectrum changes
insubstantially because the laser is already gone by the time the
XUV pumps the system. The laser has essentially no influence
on the dynamics; this is seem at the left end of the spectrogram.
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FIG. 2. (Color online) Probabilities of the (a) 2s2p and (b) 2p2

bound states with time for λL = 780 nm and various t0. The case
without laser is plotted in the gray solid curve in (a).

If the laser is shifted after the XUV, the laser will start pumping
the system from 2s2p to 2p2. The period of Rabi oscillation
is 9.6 fs, close to the laser duration 9 fs. The ionization of 2p2

has the time scale 1/Wb = 1.4 fs estimated at the laser peak.
Such a short time indicates that 2p2 is very quickly depleted in
the presence of the laser. For t0 = 0 to 5 fs, the laser is mainly
at the beginning of decay. Most population is brought from
2s2p to 2p2 before 2s2p decays, and being ionized from 2p2

without returning to 2s2p. Figure 2(a) shows that for t0 = 2 fs,
there is a quick drop at around t = 4 fs which takes away about
40% of the original population if compared to the “no laser”
level. The amount of the 2s2p doubly excited state is greatly
reduced, generating much less photoelectrons and creating a
significantly lower peak in the spectrum, as seen in Fig. 3(a).
Figure 3(b) shows the change of the resonance profile versus
the time delays in this overlapping region. If the laser moves
further positively, the longer lags between the two pulses gives
more time for 2s2p to decay before the coupling kicks in. For
t0 � 17 fs, the laser is late enough so 2s2p decays completely
without being interrupted, i.e., the original Fano shape is fully
restored, and the laser has nothing to pump anymore. The
recovery of the resonance profile versus time delay is shown
in Fig. 3(c). Ultimately, because the laser only removes bound
electrons, changing the delay time traces out the decay process.

Figure 4 shows the 2p2 resonance profiles. The signal is
large in the range from t0 = −10 fs to 0 and low for t0 > 15 fs.
Starting from the left end of the spectrogram, for t0 = −4 fs,
the tail part of the laser pulse is involved in the dynamics;
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FIG. 3. (Color online) Photoelectron profile of the 2s2p reso-
nance for λL = 780 nm. (a) The spectrogram. The cyan bar indicates
the range of delay where the two pulses overlap. (b) The spectra for
various t0, and the case without laser.

counting only this involved part of the laser, the strength
is low and the duration is short, and the Rabi oscillation is
slow. As a result, the maximum population pumped to 2p2

is “trapped” without returning back to 2s2p. At the same
time, the ionization rate by this laser “tail” is low and not
influential. The high population of the 2p2 state is shown in
Fig. 2(b). At large time, it decays into the biggest photoelectron
profile shown in Fig. 4(b). Moving on to t0 = 2 fs, the laser
strikes 2s2p mainly at the beginning of decay. As shown in
Fig. 2(b), the full strength of laser depletes the population
almost completely; at the end of laser, the 2p2 bound state is
almost empty, and there are hardly any electrons to autoionize.
Consequently, the 2p2 profile in Fig. 4 is greatly depressed,
forming a valley in the spectrogram.

Note that the 2s2p and the 2p2 resonances are differ in
symmetry. Their momentum (or angular) distributions differ,
but their energy ranges overlap because of the broad bandwidth
of the SAP. If the momentum spectrum is measured, one can
distinguish the contributions from the two resonances and
separate out the spectra. However, if only the energy spectrum
is measured, the two contributions are not separable near
37.5 eV, where the 2s2p resonance lies on the 1sεp back-
ground. The 1sεp background at 37.5 eV is 7.5 × 10−9 eV−1,
which is about the same as the peak value of the 2p2 profile
shown in Fig. 4. The 2p2 resonance profile in the total energy
spectrum will appear flatter than how it would look without
the background.
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FIG. 4. (Color online) As Fig. 3 but for the 2p2 resonance.

The mechanism of the dressing laser is further analyzed
when the calculations are done for various laser intensities.
The curves in Figs. 5(a) and 5(b) represent the spectra for
fixed delays but different intensities, where the medium one
(IL = 0.7 TW/cm2) repeats the experimental condition. The
delays 30 and 5 fs are chosen for 2s2p and 2p2, respectively,
for adequate signal strengths. For 2s2p, with the increase
of IL, the profile gradually depresses and forms interference
patterns. It suggests that if the laser at about 30 fs is strong
enough, it will suddenly deplete the bound states and halt the
decay process. The resultant profile is then constructed by the
electrons autoionized before 30 fs. Figure 5(a) also shows that
the resonance peak moves gradually to the low-energy side
with increasing IR coupling strength. For the 2p2 resonance
shown in Fig. 5(b), increasing IL mainly populates more 2p2

and makes the profile larger.

2. Comparison with experiment

The experiment by Gilbertson et al. [24] reported the
spectrogram in the energy range 33–46 eV, enclosing both
resonances in our concern. However, the energy resolution
is insufficient for the very narrow 2p2 resonance with �b =
5.9 meV, making its transient spectra invisible. The most
dominant feature in the spectrogram is the variation in peak
height of 2s2p resonance, where the decay lifetime 17 fs can
be extracted. In Fig. 6, the normalized peak value is shown as
a function of t0. The peak value for the most negative delay,
which represents the “XUV only” case, is normalized to 1.
The present calculation is displayed in three different settings,
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FIG. 5. (Color online) Photoelectron profiles for λL = 780 nm
and various IL, of (a) the 2s2p resonance for t0 = 30 fs, and (b) the
2p2 resonance for t0 = 5 fs.

where the model excludes the laser ionization, includes the
laser ionization from 2s2p, and includes the laser ionization
from both states. While the experiment did not know the
absolute times of the pulses thus unable to determine the
absolute delay, the experimental data are shifted by 4.5 fs
to fit our calculation. In Fig. 6, the calculation result without
laser ionization exhibits the similar decay feature found in the
experiment, but the absolute value is too high. By adding the
laser ionization, we are able to adjust the parameters such that
the calculation agrees with the experiment quantitatively. The
empirical ionization parameters are Cl = 0.5 and α = 0 for
2s2p and Cl = 0.5 and α = 11 for 2p2, where Cl is defined
in the PPT model [35] and α is defined in the correction
term [36].

The comparison shown above indicates that the presence
of the 2p2 state is responsible for the significant depression
of the Fano peak, where both the coupling and the IR
ionization take credit. The agreement between our model
and the experiment is very good when both effects are taken
into account. However, there are irregular oscillations in the
experimental data; their period is typically between 5 and 10
fs, but mostly unpredictable. Their appearance is unexplained
so far, but could be due to experimental artifact.

The experimental report included a simulation using the
“streaking” model (within the SFA) for isolated autoionizing
states [22], with the inclusion of ionization due to the laser
calculated within the PPT model [35], as described by Eq. (1)
in Ref. [24]. In the SFA model, the ionization of 2s2p and the
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settings where the ionization rates Wa(t) and Wb(t) are included or
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the full calculation shown by the red solid curve. The result by the
SFA model [22] is normalized such that it fits the experimental data
the most. The cyan bar indicates the delay range where the two pulses
overlap.

acceleration of the scattered electrons are treated separately,
and the laser coupling to other bound or resonance states
is totally disregarded. The common mechanism between the
model therein and our model is that the laser ionization is
treated by the PPT calculation. In order to have a clear view
on the two approaches, we have reproduced the angular-
differential electron spectrogram at the polarization direction,
where the measurement was done, using the SFA model with
the same parameters taken in our model. The result is shown
in Fig. 7. The corresponding resonance peak is plotted in
Fig. 6 which is normalized to fit the overall experimental
data. The SFA results in Fig. 6 and in Fig. 7 are similar
to our calculation for t0 > 10 fs; the resonance peak goes
through the same depression before the gradual revival along
t0. However, for t0 < 10 fs, the strong streaking peaks carrying
the laser period 2.6 fs are missing both in the experiment and
in our model. This suggests that with the inclusion of coupling
and ionization of 2p2, the present model takes charge of the
primary effects seen in the time-delayed measurement. We
comment that even though both the SFA model and the present
one account for the ionization by the IR laser, it is the ionization
of 2p2 that is mostly responsible for the great reduction in the
resonance strength observed in the experiment. This state was
not included in the SFA model.

The experiment also measured the spectrograms with
several other laser intensities and reported the depth of the
“dip” that is seen in Fig. 6’s curve against IL. The experimental
and theoretical dip values are shown in Fig. 8. As seen in
the figure, increasing IL will aggravate the depression of
the resonance. The experimental dip is also deeper than the
theoretical one for high IL, i.e., the resonance peak is more
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FIG. 7. (Color online) The angular-differential spectrogram of the
2s2p resonance in the direction of the laser polarization calculated
by the SFA model [22].

depleted than what the present theory predicts. This is because,
as IL increases, the nonlinear interaction of the IR opens up
more excitation and ionization pathways that deplete the 2s2p

part (or the bound part) of the resonance. The depletion will
lead to fewer autoionization events and thus weaker electron
signal near the resonance. Note that the discrepancy between
the present model and experimental data in Fig. 8 grows
nonlinearly with IL for IL > 4.5 × 1011 W/cm2.

B. Laser wavelength of 540 nm

Using long pulses and laser spectroscopy, Autler-Townes
doublet [30,31] has been observed when two bound states
are strongly coupled by a dressing laser field. For the two
autoionizing states and the ultrashort laser in the present
study, can we observe anything resembling the Autler-Townes
doublet in the spectra? In Sec. III A, we have shown that
for the 780-nm IR, since the laser detuning is large and the
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profile at the dip (see text) as a function of the peak intensity of laser.
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laser ionization is significant, the evidence of Autler-Townes
doublets is not prevalent except that the small shift of the 2s2p

peak at higher coupling intensity in Fig. 5(a) gives a feeble
hint. We now intentionally tune the laser to λL = 540 nm
(mean photon energy is 2.30 eV) so it is in resonance between
2s2p and the lower-energy state, 2s2(1 S) at 57.85 eV. In this
setup, first, the laser detuning is negligible, making the Rabi
oscillation the strongest. Second, the binding energy of the |b〉
state changes from 3.34 eV for 2p2 to 7.55 eV for 2s2, which
effectively shuts down its laser ionization. As a consequence,
the Rabi flopping dominates, and other complications are
minimized. We examine below whether we can observe the
Autler-Townes doublet for such a “three-level system” where
the two fast-decaying “levels” are strongly coupled by a short
pulse.

For the parameters in the model, the 2s2 resonance width
(�b) of 0.125 eV, or the lifetime of 5.3 fs, is taken from
the earlier calculation [37]. The dipole transition and the
q-parameter are assumed to be the same as those for 2p2,
i.e., Dba = 2.17 a.u. and qb = 1000, because the first-order
transition in Dba is again 〈2s|D|2p〉 and D2a has no first-order
term. The PPT rate for 2s2 at the laser peak is in the order
of 10−5 eV which is negligible for our purpose. The Rabi
frequency between 2s2p and 2s2 is 0.27 eV, corresponding to
the period of 15 fs.

The evolution of the bound states is shown in Fig. 9. An
obvious difference from the λL = 780 nm case is that the laser
coupling now is strong enough to completely deplete 2s2p

so its population almost touches zero before bouncing back,
as shown in Figs. 9(b)–9(b). However, when it revives, the
amount brought back by the oscillation is only less than 10%
of what has been removed. For the 2s2 state for t0 = 5, 10, and
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FIG. 9. (Color online) Probabilities of the 2s2p and the 2s2 bound
states with time for λL = 540 nm and various delays. The decay of
2s2p without laser is shown in the gray solid curve.
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FIG. 10. (Color online) As Fig. 3 but for λL = 540 nm. The gray
solid curve represents the “no laser” case.

20 fs, the overall population decreases with the delay because
the 2s2p decays with time and the laser pumps fewer and
fewer electrons from 2s2p to 2s2.

Now we turn to the electron spectra of the 2s2p resonance
in Fig. 10. When the delay passes the origin and becomes
positive, the resonance profile flips horizontally, looking like
the mirror image of the “no laser” spectrum other than an
overall reduction in height. This flipped peak is seen in the t0 =
5 fs curve in Fig. 10(c). To understand this pattern, in Fig. 9(b),
the sharp drop of 2s2p from 0 to 7 fs suggests that most
electrons move from 2s2p to 2s2 at the very beginning of the
decay of 2s2p. The laser duration allows the Rabi oscillation
to run a little more than a half cycle, which bounces only a
small fraction of the population back to 2s2p. The relatively
few electrons returning to 2s2p have changed the phase by
π through this Rabi flopping, thus reversing the sign of q in
the resonance profile (see Ref. [19]). When t0 increases, in
Fig. 10(a), an additional ridge moves from the lower energy to
the original peak position, stretching from 35.4 eV at t0 = 15 fs
to 35.5 eV at t0 = 50 fs. This suggests that the laser divides the
autoionization into two periods of time; the part prior to the
laser is responsible for the regular Fano profile as shown by
the “no laser” curve, and the part after the laser is responsible
for the “inverse” shape that we have just discussed. Different
delay times determine the fractions of these two parts, and the
ridge forms at different energies as the interference pattern.
Figure 10(d) clearly shows the shifting of the ridge while the
inverse peak stays at 35.55 eV.
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FIG. 11. (Color online) As Fig. 10 but for the 2s2 resonance.

The 2s2 profile in Fig. 11(a) has a very gentle and monotonic
attenuation along t0, while the 2p2 profile in Fig. 4(a) features
a “gap” in t0 where the profile drops to zero altogether
before it regains some strength as t0 increases. This gap, as
explained in Sec. III A 1, originates from the IR ionization;
however, in the λL = 540 nm case, this mechanism is missing
since the ionization rate for 2s2 is low. Rabi oscillation and
autoionization are the only influences on the evolution of 2s2.
Since the Rabi oscillation runs only a little more than a half
cycle, it can be viewed as a “one way route” for electrons from
2s2p to 2s2. Once arriving at 2s2, the electrons autoionize
quickly to form the 2s2 profile. As t0 increases, more electrons
will autoionize from 2s2p and less will be brought by the laser
to 2s2, and the 2s2 resonance becomes weaker.

The choice of 2s2 as the second coupled state is optimal for
practical measurement issues, such as the signal strength and
energy resolution. One must remember that the 2s2 resonance
is on top of the 1sεp background if the total electron energies
are measured. The maximum signal intensity of the 2s2 profile
is nearly 10−8 eV−1, and the nearby 1sεp background is
7.5 × 10−9 eV−1, i.e., when the two are layered together,
the resonance signal is high enough to stand out from the
background. Furthermore, its resonance width �b = 0.125 eV
is larger than that of 2s2p, making its visibility better even
with the same energy resolution used in Ref. [24]. Considering
both the height and the width in spectrum, detecting the 2s2

resonance versus delay should be feasible.
The complicatedly structured profiles seen in Figs. 10(b)–

10(b) are in contrast to the Autler-Townes doublet in
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FIG. 12. (Color online) Photoelectron profile of the 2s2p reso-
nance with a 540-nm, 1-ps laser pulse. With such a long pulse, the
time delay cannot be well defined. The original Fano line shape is
plotted in the gray solid curve.

long-pulse cases. The latter features the splitting proportional
to the field strength, and each peak in the doublet does not differ
much from the original single peak in shape. In order to clarify
the difference between long and short pulses in a systematic
way, in Fig. 12, we show what the 2s2p profile should look like
if the laser is 1 ps long, with all other parameters unchanged.
A 1-ps laser pulse is much longer than our atomic time scale
and equivalent to a stable AC field, where time delay cannot
be defined. The separation of the splitting is about the Rabi
frequency 0.27 eV. Nevertheless, in a standard EIT setup, the
|b〉 state is a bound state, which is not the case in the present
system. As a result, in our example, the split peaks are fainter
because of the finite lifetime of 2s2.

If the laser duration shrinks from 1 ps to 50 fs, the magnitude
of the splitting will be a function of the time delay. However,
since the laser is still significantly longer than the 17 fs decay
lifetime in concern, the delay dependence is more relevant to
the overlap between the pulses rather than the autoionization.
This scenario has been studied with transient absorption
spectroscopy in helium where the XUV is 30 fs and the IR
is 42 fs [23]. The study showed that the splitting was tuned to
maximum by overlapping the pulses, and it disappeared when
the pulses were totally separate. The system can be viewed
as a dressed atom where the dressing condition can be slowly
turned on or off by changing the time delay.

As the comparison indicates, the mechanisms differ for the
short and long pulses. For a long dressing pulse, the field enters
as the coupling (off-diagonal) terms in the Hamiltonian of the
system. When the Hamiltonian is diagonalized, the energy
levels are shifted, which are then represented by the doublet.
However, for a short dressing pulse, the coupling strength
changes quickly; the Rabi frequency is not well defined, and
the mechanism for the long pulse breaks down. In other words,
the dressing field influences only a short temporal segment
from the whole autoionization, while, most of the time, the
resonance profile evolves without laser and aims at the single-
peak Fano profile rather than the doublet.
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IV. SUMMARY AND CONCLUSIONS

A model has been developed to study the autoionization
dynamics in laser-dressed helium. An attosecond XUV pulse
excites the 2s2p resonance in a time-delayed 780-nm IR
pulse. The IR can couple the 2s2p and 2p2 states and
ionize the two states. The photoelectron energy spectra for
different time delays are calculated and compared with the
experiment [24]. While the experimental energy resolution
was not good enough to observe the resonance shape in
detail, good agreement for the resonance peak intensity versus
time delay between our model and the experiment has been
achieved. The decay lifetime of 2s2p can be retrieved by
this result. Because of the strong IR ionization, the coupling
with 2p2 is to open an efficient pathway where the 2s2p

resonance can be depleted, i.e., the IR field modifies the
profile with an overall depression without changing the
spectral shape, which differs totally from the typical three-level
systems.

To reduce the effect of ionization by the IR laser, we change
the laser wavelength to 540 nm and consider the coupling of the

2s2p and 2s2 states. The 2s2 state has a larger binding energy
where its ionization is negligible. In this case, a complicated
pattern in the 2s2p resonance shape versus time delay has
been found. The result is interpreted by the Rabi oscillation
between the two autoionizing states whose cycles are confined
by the 9-fs laser. In order to make connection of this result to
the traditional dressed atoms, we change the laser duration to
1 ps and recover the Autler-Townes splitting in the spectrum,
which also clarifies the difference between the short- and long-
dressing fields. In order words, in the presence of an intense
IR, autoionization dynamics can be changed significantly. The
possibilities of such manipulations are tremendous, and what
one can gain from such experiments remains to be further
explored.
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