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When a molecule is exposed to an intense laser pulse, electrons that are removed
earlier in the laser field may be driven back by the oscillating electric field of the
laser to recollide with the target ion. The scattering of the returning electrons of-
fers the opportunities to study the structure of the molecule. Since lasers of pulse
duration of a few femtoseconds are already available, thus it is possible to use few
femtoseconds lasers for dynamic imaging of transient molecules. The basic scatter-
ing theories for dynamic quantum imaging of molecules are discussed.

1 Introduction

Imaging, or the determination of the structure of an object, has always played an
important role in physical sciences. For microscopic systems, X-ray and electron
diffraction are the conventional methods for achieving spatial resolutions on the or-
der of Angstrom or less [1]. These methods, however, are not suitable for following
the time evolution of a dynamic system, in particular, in a chemical reaction, which
requires temporal resolutions of a few femtoseconds [2]. Although ultrafast electron
diffraction (UED) and X-ray free-electron lasers (XFEL) that have come online and
others being developed at big facilities are aiming at achieving temporal as well as
spatial resolutions, it is important to investigate the possibilities of accomplishing
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the same goal using small-scale methods. In this contribution, we propose such an
approach based on infrared or mid-infrared (MIR) lasers for dynamic imaging of
molecules. Today such lasers have pulse durations of a few femtoseconds already,
thus if they can reach good spatial resolution, then in principle these lasers can be
used for dynamic imaging of molecules.

To study the structure of a molecule, the first step is to determine the bonding
lengths and bond angles of all the atoms in the molecule. This is what the X-ray
diffraction and electron diffraction are good for. For objects that can be crystallized
X-ray diffraction is preferred. For molecules in the gas phase, electron diffraction
is the standard method. The knowledge of bond lengths and bond angles (the ge-
ometry) in a molecule alone do not offer the full knowledge of the ”chemistry” of a
molecule, in particular, the bonding of the outer-shell electrons, as well as how the
molecule will respond to an external perturbation. To probe the molecules at the next
higher level, again electrons and photons are used. Thus electron-molecule scatter-
ing where electrons with energies from a few eV’s to hundreds of eV’s are used.
Similarly, photons from ultraviolet to soft X-rays are used to probe the outershells
of molecules. To understand the results of these measurements, advanced quantum
mechanical many-body theories are needed since the effects of exchange and elec-
tron correlation are known to play important roles in such situations. A large fraction
of modern atomic and molecular physics since the 1960’s are devoted to these lat-
ter topics. Many powerful experimental and theoretical tools have been developed
and a great deal of data base for each species have been documented. They form an
essential component of our present knowledge of the microscopic world.

Infrared or MIR lasers have wavelengths from fractions to a few microns. They
are much longer than the typical interatomic separations in a molecule. However,
when a molecule is exposed to a short infrared laser pulse, electrons that were re-
moved at an early time of the pulse may be driven back by the oscillating electric
field of the laser to recollide with the molecular ion, to incur processes like high-
order harmonic generation (HHG), high-energy above-threshold-ionization (HATI)
electrons and nonsequential double ionization (NSDI). According to the rescatter-
ing model [3, 4], they are similar to conventional electron collision processes with
the molecular ions. Thus HHG is due to the photo-recombination of the returning
electrons with the molecular ion with the emission of high energy photons, i.e.,
a time-reversed process of photoionization of a neutral molecule. Similarly, HATI
spectra are due to the elastic scattering of the returning electrons with the target ion
for which the electrons are scattered into the backward directions, while NSDI is due
to the impact ionization by the returning electrons with the emission of another elec-
tron similar to the (e, 2e) processes. Unlike low-energy electrons that are removed
by the tunneling process which occurs far away from the core of the molecule, these
rescattering processes are by fast electrons which have been accelerated by the laser
field and the collisions occur close to the molecules. The energy of the returning
electron is proportional to the laser intensity, and increases quadratically with the
wavelength of the laser. Thus for a linearly polarized Ti-Sapphire laser with wave-
length of 800 nm and peak intensity of 2× 1014 W/cm2, the maximum returning
electron energy is about 38 eV. Using a MIR laser at wavelength of 1200 nm and
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1800 nm, at the same peak intensity, the returning energy will be about 86 eV and
192 eV, respectively. Thus using IR or MIR lasers for probing the structure of a
molecule, we rely on electron scattering. With the returning electron energies of 86
eV and 192 eV, they have de Broglie wavelength of 1.42 and 0.64 Angstroms, re-
spectively. They are closer to the typical molecular size, making MIR lasers capable
of probing the structure of a molecule.

The rescattering model or the so-called three-step model described above has
been around since the early 1990’s. However, they have always been used to “in-
terpret” qualitatively the observed rescattering phenomena only. The model has not
been put in a form for quantitative calculations. Recently we have developed a quan-
titative rescattering (QRS) theory [5, 6] which can be used to calculate HHG, HATI
and NSDI yields. The applications of the QRS to these processes have been doc-
umented in a recent review article [6]. Essential to the QRS is the usual field-free
scattering cross sections. For this book chapter, we will focus on the basic theories
used in QRS instead of presenting many actual results. Thus, this article is written
for those in the strong field community who are not familiar with quantum scat-
tering theories. Clearly only the simple theories can be presented here. Advanced
many-body scattering theories developed in the past half a century are beyond the
reach of this contribution. Atomic units will be used in this article unless otherwise
indicated.

2 Theoretical tools for studying atoms and molecules in strong
fields

In this Section we present the elementary scattering theories for the solution of
time-dependent and time-independent Schrödinger equations. These basic theoret-
ical tools serve as the common language for both theorists and experimentalists in
understanding the interaction of light or electrons with atoms and molecules.

2.1 Solution of the time-dependent Schrödinger equation

Based on quantum mechanics, the interaction of an intense laser pulse with an atom
is described by the time-dependent Schrödinger equation (TDSE)

i
∂
∂ t

Ψ(r, t) = HΨ(r, t) (1)

where

H = H0 +Hi(t) =−1
2

∇2 +V (r)+Hi(t). (2)
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The atom-field interaction, in length gauge, is given by

Hi = r ·E(t), (3)

where E(t) is the laser field. For simplicity, the atom is approximated by a model
potential

V (r) =−1+a1e−a2r +a3re−a4r +a5e−a6r

r
, (4)

where the parameters ai’s are obtained by fitting to the known energies of the ground
state and the first few excited states of the atom. The model potential for a neutral
atom can also be expressed as

V (r) = Vs(r)−1/r, (5)

where the Coulomb potential part is separated out and Vs(r) is the remaining short-
range potential. The TDSE can be solved by expanding Ψ(r, t) in terms of eigen-
functions of H0 within a box of r ∈ [0,rmax]

Ψ(r, t) = ∑
nl

cnl(t)Rnl(r)Ylm(r̂) (6)

where the radial functions Rnl(r) are expanded using the DVR (discrete variable
representation) basis functions associated with Legendre polynomials, while the cnl
are calculated using the split-operator method. At the end of the laser pulse t = tend ,
the photoelectron yield is computed by projecting out the total wavefunction onto
eigenstates of a continuum electron with momentum k,

D(k,θ)≡ ∂ 3P
∂ 3k

= |〈Φ−
k |Ψ(t = tend〉|2 (7)

where the continuum state Φ−
k satisfies the following equation

[
−1

2
∇2 +V (r)

]
Φ−

k =
k2

2
Φ−

k . (8)

Here Φ−
k satisfies the incoming wave boundary condition. It can be expanded in

terms of partial waves as

Φ−
k (r) =

1√
k
∑
lm

il exp[−i(σl +δl)]REl(r)Ylm(r̂)Y ∗lm(k̂). (9)

Here, δl is the l-th partial wave phase shift due to the short range potential Vs(r)
in Eq. (5), and σl is the Coulomb phase shift. The Y’s are the usual spherical har-
monics. For the continuum radial function REl , it is energy normalized such that
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∫ ∞

0
REl(r)RE ′l(r)r

2dr = δ (E−E ′), (10)

and has the asymptotic form

REl(r)→ 1
r

√
2

πk
sin(kr− lπ/2− γ log2kr +σl +δl). (11)

The details of such calculations can be found in [7].

2.2 Strong field approximation

In the strong field approximation (SFA), one treats the atomic potential as perturba-
tion. In the first-order SFA, called SFA1 here, the ionization of the atom is calculated
from

f1(k) =−i
∫ ∞

−∞
dt

〈
χk(t) |Hi(t)|Ψ0(t)

〉
. (12)

Here Ψ0 is the initial state, Hi is the laser-electron interaction and χk is the Volkov
state. To describe rescattering, a second-order SFA (SFA2) [8, 9, 10] is needed. For
SFA2, the scattering amplitude can be written as

f2(k) = −
∫ ∞

−∞
dt

∫ ∞

t
dt ′

∫
dp

〈
χk(t ′) |V |χp(t ′)

〉

×〈
χp(t) |Hi(t)|Ψ0(t)

〉
. (13)

Here the electron is first ionized at time t and rescattered at time t ′. The potential V
is the electron-ion interaction, i.e., the model potential chosen. Integration over the
momentum is carried out using saddle-point approximation.

2.3 Laser-free elastic scattering theory

In quantum mechanics, the scattering of an electron by a spherically symmetric
potential V (r) is governed by the time-independent Schrödinger equation

[∇2 + k2−U(r)]ψ(r) = 0 (14)

where U(r) = 2V (r) is the reduced potential and k is the electron momentum, related
to the incident electron energy by k =

√
2E. For a short-range potential which tends

to zero faster then r−2 as r→∞, the scattering wave function satisfies the asymptotic
outgoing wave boundary condition
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ψ+(r)r→∞ =
1

(2π)3/2

[
exp(ikz)+ f (θ)

exp(ikr)
r

]
(15)

where θ is the polar angle measured from the incident direction. We choose the
z-axis along the direction of the incident wave vector k. Here ψ+(r) satisfies the
outgoing wave boundary condition and can be expanded in terms of partial waves,

ψ+(r) =

√
2
π

1
kr ∑

lm
ileiδl ul(kr)Ylm(r̂)Y ∗lm(k̂) (16)

where Ylm is a spherical harmonic. The continuum waves are normalized to δ (k−
k′). The radial function ul(kr) satisfies

[
d2

dr2 + k2− l(l +1)
r2 −U(r)

]
ul(kr) = 0. (17)

The above expressions are valid for short-range potential only. For a Coulomb
potential, Vc =−Z/r, its full wavefunction can be expanded as

ψ+
c (r) =

√
2
π

1
kr ∑

lm
ileiσl uc

l (kr)Ylm(r̂)Y ∗lm(k̂) (18)

where

σl = arg[Γ (l +1+ iη)] (19)

is called the Coulomb phase shift with η =−Z/k. The scattering amplitude for the
Coulomb potential can be obtained analytically using parabolic coordinates,

fc(θ) =−η exp(2iσ0)
exp{−iη ln[sin2(θ/2)]}

2k sin2(θ/2)
. (20)

The atomic potential in Eq. (5) is an example of modified Coulomb potential. In
such a potential the scattering amplitudes is the sum of Coulomb scattering ampli-
tude and the amplitude from the short-range potential alone

f (θ) = fc(θ)+ f̂ (θ), (21)

where the first term is the Coulomb scattering amplitude [Eq. (20)], and the second
term is given by

f̂ (θ) =
∞

∑
l=0

2l +1
k

exp(2iσl)exp(iδl)sinδlPl(cosθ) (22)

where Pl(cosθ) is the Legendre polynomial, and δl is the phase shift from the short-
range potential. Due to the short range nature, the summation in Eq. (22) can be
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truncated after some number of partial waves, depending on the electron energy.
The elastic scattering DCS is then given by

σ(k,θ)≡ dP
dΩ

= | fc(θ)+ f̂ (θ)|2. (23)

For high-energy scattering, if the scattering is treated to first-order, then the
scattering cross section is given by the so-called plane wave Born approximation
(PWBA) or first Born (B1) approximation. In B1, the DCS is calculated from

σPWBA(k,θ) =
1

4π2 |V (q)|2 (24)

i.e., proportional to the square of the potential in the momentum space. Here q is
the momentum transfer and its magnitude is q = 2k sin(θ/2). In B1 the continuum
electron wavefunctions are represented by plane waves. For electron-target ion col-
lisions, B1 is not valid even at large collision energies since it neglects the effect of
long-range Coulomb interaction as well as the strong short-range potential due to
the atomic ion or molecular ion core.

2.4 Quantitative rescattering theory

For a one-electron atom, we can solve TDSE to obtain the photoelectron momentum
spectra D(k,θ). For a given model potential V (r), one can also calculate accurate
DCS, σ(kr,θr), for a given kr. Both can be obtained essentially “exactly”. Since the
rescattering model does not specify how to calculate the returning electron wave
packet, we define it as the ratio

W (kr,θr) = D(k,θ)/σ(kr,θr). (25)

If the rescattering concept is correct, then the ratio should not depend on the angle
θr. Before the ratio can be calculated, we need to establish the relation between
(k,θ) and (kr,θr). The kr is the momentum value after electron is scattered by the
ion. Since the collision occurs in the laser field, it is still under the influence of the
laser after the collision. As it exits from the laser field, an additional momentum
along the direction of the laser polarization will be added. Thus we can write

kz = k cosθ = ±Ar∓ kr cosθr, (26)
ky = k sinθ = kr sinθr. (27)

The upper signs in Eq. (26) refer to the right-side (kz > 0) while the lower ones to
the left-side (kz < 0) electrons. Here Ar=A(tr) is the vector potential at the time tr
of collision. Note that the electron can return from the left or the right along the
polarization axis to revisit the target ion. Based on the classical rescattering theory,
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the returning momentum kr is related to the vector potential Ar by Ar = kr/1.26.
Note that this sets the maximum returning electron energy at 3.2 Up. Here Up is the
ponderomotive energy, Up = I/4ω2, with ω the angular frequency of the laser and
I the peak intensity. With these conditions, we then solve

tanθ =
sinθr

±(1/1.26− cosθr)
, (28)

k2 = k2
r (1.63−1.59cosθr) (29)

These two expressions relate the momentum of the photoelectron and the momen-
tum of the electron in the field after elastically rescattered by the ion.
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Fig. 1 Typical 2D electron momentum distributions (in logarithmic scale): The TDSE calculation
is for single ionization of Ar in a 5 fs laser pulse at the intensity of 1.0× 1014 W/cm2 with the
wavelength of 800 nm. Photoelectrons of a given energy are represented on a concentric circle
centered at the origin. The elastic scattering of a returning electron with momentum kr in the laser
field is represented by a partial circle with its center shifted from the origin by Ar = kr/1.26.

2.5 The rescattering electron wave packet

In Fig. 1 the relation between the two momentum vectors are shown. Take the
photoelectron yield along the semicircle of kr=constant and divide it by the DCS,
σ(kr,θr), we obtain W (kr,θr). Examples of such W (kr,θr) are shown in Fig. 2. For
the upper frame ones, they are obtained from TDSE solutions and the exact DCS.
We note that W (kr,θr) does not depend on θr, thus we can drop the dependence
on θr and write it as W (kr). This condition is essential if we are to call W (kr) a
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wave packet as in typical scattering theory. Note how W (kr) was defined. It is not a
measurable quantity since it is defined when the laser field is still on. Using SFA2,
we can obtain a similar wave packet. Here the DCS is taken from σPWBA(kr,θr),
Eq. (24). Since in SFA2 the electron-ion interaction is treated to first order only,
thus the PWBA cross section should be used for σ(kr,θr). We note that the result-
ing W (kr) from SFA2, shown in the bottom row of Fig. 2, are essentially identical
to the ones on the upper row. We comment that only the kr-dependence of the wave
packet is considered here. Their absolute values are different, reflecting that the ion-
ization rates from TDSE and from SFA are different.

The W (kr) obtained from SFA2 and from TDSE are identical is the most pro-
found result of the QRS model. In fact, in hindsight, it should be expected if the
rescattering picture is valid. After tunneling ionization, the motion of the electron
is mostly away from the atomic ion. Thus W (kr) is determined mostly by the in-
teraction of a free electron with the laser field. This interaction is treated exactly in
SFA2, thus the W (kr) from SFA2 is very close to the one from TDSE. In SFA2, the
tunneling ionization rate is not calculated correctly, nor the electron-ion scattering
cross sections. The electron wave packet, W (kr), however, is accurate. Thus in the
quantitative rescattering (QRS) theory, we can obtain HATI spectra from

D(k,θ) = W (kr)σ(kr,θr), (30)

where W (kr) is the WSFA(kr) calculated from SFA2. Since SFA2 calculations are
much faster than solving TDSE, and the calculation of σ(kr,θr) is the same as in
field-free scattering cross sections, the QRS provides a very simple and accurate
method of obtaining HATI spectra on the one hand, and on the other hand, allows
one to extract field-free DCS, σ(kr,θr), from experimental HATI spectra. The latter
establishes the theoretical foundation for using infrared lasers for imaging the struc-
ture of a target. Since infrared lasers with pulse durations of a few femtoseconds are
already available, it has the potential for dynamic chemical imaging with temporal
resolution of a few femtoseconds.

The analysis so far concerns with the interaction of an atom with a laser of well-
defined intensity. In actual experiments, an intense laser does not have fixed intensity
within the focus volume. Thus to compare with experimental HATI spectra, theoret-
ical calculations must include the volume effects [11]. For a peak intensity I0 at the
focal point, the yield of the photoelectrons with momentum k should be

S(k, I0) = ρ
∫ I0

0
DI(k,θ)

(
∂V
∂ I

)
dI (31)

where ρ is the density of atoms in the chamber, DI(k,θ) denotes the momentum dis-
tribution for a single intensity I and (∂V/∂ I)dI represents the volume of an isoin-
tensity shell between I and I +dI.

In the QRS calculations, we obtain the volume-integrated returning electron wave
packet using Eq. (31) since the DCS does not depend on the laser intensity. Conse-
quently, Eq. (31) becomes
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Fig. 2 (Color online) Right-side wave packets extracted from the electron momentum distributions
calculated using TDSE and SFA2, for single ionization of Ar in a 5 fs laser pulse with the wave-
length of 800 nm. Left column: from TDSE (top) and SFA2 (bottom), at intensity of 1.0× 1014

W/cm2; Right column: same, but at 2.0×1014 W/cm2.

S(k, I0) = W̄I0(kr)σ(kr,θr) (32)

where W̄I0(kr) is the volume-integrated wave packet at the peak intensity I0

W̄I0(kr) = ρ
∫ I0

0
WI(kr)

(
∂V
∂ I

)
dI (33)

with WI(kr) being the wave packet for the laser pulse at a single intensity I.

2.6 High-order Harmonic Generation

For the model one-electron atomic system, once the time-dependent wavefunction
Ψ(r, t) is obtained from solving Eq. (1), one can calculate the induced dipole of the
atom by the laser field either in the length or acceleration forms

DL(t) = 〈Ψ(r, t)|z|Ψ(r, t)〉 (34)

DA(t) = 〈Ψ(r, t)|∂V (r)
∂ z

|Ψ(r, t)〉. (35)

The HHG power spectra are obtained from Fourier components of the induced
dipole moment D(t) as given by
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P(ω) ∝ |a(ω)|2 =
∣∣∣∣
∫ d2D(t)

dt2 eiωtdt
∣∣∣∣
2

≈ ω4|D(ω)|2. (36)

Since TDSE cannot be solved accurately for molecular targets, the strong field
approximation, or the SFA2, has been employed for obtaining HHG since the
1990’s. Here we show SFA2 for molecular targets. Assuming that the molecules
are aligned along the x-axis, in a laser field E(t), linearly polarized on the x-y plane
with an angle θ with respect to the molecular axis. The parallel component of the
induced dipole moment can be written in the form

D‖(t) = i
∫ ∞

0
dτ

(
π

ε + iτ/2

)3/2

[cosθd∗x (t)+ sinθd∗y (t)]

×[cosθdx(t− τ)+ sinθdy(t− τ)]E(t− τ)
×exp[−iSst(t,τ)]a∗(t)a(t− τ)+ c.c. (37)

where d(t)≡ d[pst(t,τ)+A(t)], d(t− τ)≡ d[pst(t,τ)+A(t− τ)] are the transition
dipole moments between the ground state and the continuum state, and pst(t,τ) =
−∫ t

t−τ A(t ′)dt ′/τ is the canonical momentum at the stationary points, with A the
vector potential. The perpendicular component D⊥(t) is given by a similar formula
with [cosθd∗x (t)+ sinθd∗y (t)] replaced by [sinθd∗x (t)− cosθd∗y (t)] in Eq. (37). The
action at the stationary points for the electron propagating in the laser field is

Sst(t,τ) =
∫ t

t−τ

(
[pst(t,τ)+A(t ′)]2

2
+ Ip

)
dt ′, (38)

where Ip is the ionization potential of the molecule. In Eq. (37), a(t) is introduced
to account for the ground state depletion.

According to the rescattering model, HHG occurs when the returning electrons
photo-recombine with the parent ions, with the emission of high-energy photons.
Following the QRS, we can anticipate a relation similar to Eq. (30) for HHG [12].
Since the phase of the HHG is important, we write the complex laser-induced dipole
as

|D(ω)|eiφ(ω) = |W (E)|eiη(E)|d(ω)|eiδ (ω), (39)

where φ and η are the phases of the harmonic and the returning electron wave packet
W (E), respectively; d and δ are the amplitude and phase of the photo-recombination
transition dipole. The electron energy E is related to the emitted photon energy ω by
E = ω− Ip, with Ip being the ionization potential of the target. Note that the W(E)
defined here is the complex electron wave packet amplitude, whereas W (kr) defined
for HATI electrons are the “intensity”.

In the equation above the transition dipole is similar to the one used in photoion-
ization theory. For the transition from an initial bound state Ψi to the final continuum
state Ψ−

k due to a linearly polarized light field (in the length form) it is given by

dk,n(ω) = 〈Ψi|r ·n|Ψ−
k 〉. (40)
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Here n is the direction of the light polarization and k is the momentum of the
ejected photoelectron. For atomic targets, using the scattering wavefunction given
by Eq. (9), we can evaluate the dipole transition matrix element. For example, for
photoionization from the 3p shell of Ar, the transition dipole can be written as

〈Ψi|z|Ψ+
k 〉 =

1√
3πk

[
ei(σ0+δ0)〈R31|r|RE0〉/2

−ei(σ2+δ2)〈R31|r|RE2〉
]
. (41)

For molecular targets, the calculation of the transition dipole is more compli-
cated. Both the ground state and the continuum state wavefunctions have to be
calculated using more advanced quantum chemistry packages. The photoionization
differential cross section (DCS) can be expressed in the general form as

d2σ I

dΩkdΩn
=

4π2ωk
c

∣∣∣〈Ψi|r ·n|Ψ−
k 〉

∣∣∣
2
, (42)

where k2/2+Ip = ω with Ip being the ionization potential, ω the photon energy, and
c the speed of light. A more extended discussion for the calculation of the transition
dipole moments of molecules can be found in Section II.D of Le et al. [12] where
references to other works can be found as well.

2.7 Nonsequential double ionization due to the direct (e, 2e)
collision processes

Nonsequential double ionization (NSDI) is another interesting rescattering phe-
nomenon when atoms and molecules are placed in the laser field. NSDI involves
at least two electrons. According to the rescattering picture, the returning electron
can knock out another electron in a process similar to the electron impact ioniza-
tion of an atom, or the so-called (e, 2e) process. Clearly Eq. (30) can be used to
obtain the momentum distributions of the ionizing and the ejected electrons. Since
electron impact ionization occurs in the laser field, the photoelectron momentum of
each electron has to be shifted in the same way as in Eqs. (26) and (27). According
to QRS, the main additional ingredient needed is the differential cross sections for
the (e, 2e) collisions. Below we discuss the elementary field-free electron impact
ionization theory.

Consider a two-electron atomic system. Let r1 and r2 be the position vectors of
the projectile and the bound state electron, respectively, the exact Hamiltonian for
the whole system is

H =−1
2

∇2
1−

ZN

r1
− 1

2
∇2

2−
ZN

r2
+

1
r12

. (43)
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This Hamiltonian can be rewritten approximately as

Hi =−1
2

∇2
1 +Ui(r1)− 1

2
∇2

2−
ZN

r2
(44)

where we assume that the He+ ion initially is in the ground state, and the charge
of the nucleus is ZN = 2. Here Ui(r1) is the initial state distorting potential which
is used to calculate the initial state wave function for the projectile. Using the prior
form, the direct transition amplitude for the (e, 2e) collision process is

fe2e(k1,k2) = 〈Ψ−
k1,k2

|Vi|Ψki
〉 (45)

where Vi is the perturbation interaction,

Vi = H−Hi =
1

r12
− ZN

r1
−Ui(r1). (46)

In (45),Ψ−
k1,k2

is an exact solution of the three-body problem satisfying the incoming-
wave boundary condition for two electrons with momentum vectors k1 and k2.
There is no exact analytical solutions for Ψ−

k1,k2
, thus various approximations have

to be used. First consider the so-called BBK model[13] which is expressed as

Ψ−
k1,k2

(r1,r2) = (2π)−3 exp(ik1 · r1)exp(ik2 · r2)

×C(α1,k1,r1)C(α1,k2,r2)C(α12,k12,r12), (47)

where the Coulomb part of the wave function is defined as

C(α,k,r) = exp(−πα/2)Γ (1− iα)1F1[iα;1;−i(kr +k · r)] (48)

and

k12 =
1
2
(k1−k2), r12 = r1− r2,

α1 =−ZN

k1
, α2 =−ZN

k2
, α12 =

1
2k12

. (49)

In (47), the Coulomb interaction between the two outgoing electrons has been taken
into account. If we set α12 = 0, then the electron-electron interaction is turned off
and the two continuum electrons are then given by the product of two Coulomb
functions, each electron seeing the charge ZN from the nucleus. In the equation
above, Γ is the gamma function and 1F1 is the confluent hypergeometric function.

From the approximate initial state Hamiltonian Hi, we can write down the initial
state wavefunction in the product form

Ψki
(r1,r2) = ϕki

(r1)φHe+(r2) (50)

where ϕki
(r1) describes the incident electron and satisfies
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[
−1

2
∇2

1 +Ui(r1)− 1
2

k2
i

]
ϕki

(r1) = 0, (51)

here ki is the incident momentum and φHe+(r2) is the ground state wavefunction of
He+. Due to the energy conservation, the wave vectors k1 and k2 satisfy

1
2

k2
i =

1
2

k2
1 +

1
2

k2
2 + Ip. (52)

The discussion up to now assumes that the two electrons are distinguishable. In-
cluding the exchange, the triply differential cross section (TDCS) for the electron
impact ionization process is given by

d3σe2e

dΩ1dΩ2dE
= (2π)4 k1k2

ki

[3
4
| fe2e(k1,k2)−ge2e(k1,k2)|2

+
1
4
| fe2e(k1,k2)+ge2e(k1,k2)|2

]
(53)

where Ω1(θ1,φ1) and Ω2(θ2,φ2) are the solid angles of detection of the two elec-
trons leaving the collision with momenta k1 and k2, and ge2e(k1,k2) is the exchange
amplitude with ge2e(k1,k2) = fe2e(k2,k1).

The distortion potential Ui(r1) in (51) is not determined so far. If we choose
Ui(r1) = 0, then the incident electron is given by a plane wave. On the other hand,
if the distortion potential is set as Ui(r1) = −(ZN − 1)/r1, then it is described by
a Coulomb wave. By calculating the TDCS using different approximate initial and
final state wavefunctions, we can specify P-CC, P-CCC and C-CCC models for the
(e, 2e) processes; here the first letter indicates a plane wave (P) or a Coulomb wave
(C) for describing the incident electron, the second string of letters indicate that
electron-electron repulsion is not included, in CC, or is included, in CCC. By com-
paring the results of such calculations with experimental measurement, the effect of
Coulomb interaction between the two electrons can be assessed. Note that this effect
depends on the kinetic energy, as well as the angle between the momentum vectors
of the two electrons.

2.8 Nonsequential double ionization due to the indirect
excitation-tunneling ionization processes

In NSDI, electron collision occurs in the laser field. If the core electron is excited
by the returning electron to an excited state, the excited electron may be tunnel
ionized by the laser field, resulting in the emission of two electrons. To calculate
such processes, one first needs to obtain electron impact excitation cross sections,
then evaluate the removal of the excited electron, where one can use the simple
tunneling model.

For electron impact excitation, the final state wavefunction is given by
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Φ−
k f

(r1,r2) = ϕ−k f
(r1)φ f (r2) (54)

where ϕk f
is the wave function used to describe the outgoing electron, which satis-

fies the differential equation
(
−1

2
∇2

1 +U f (r1)
)

ϕk f
(r1) =

1
2

k2
f ϕk f

(r1). (55)

For the present purpose, we set the distorting potential U f (r1) =−(ZN−1)/r1 such
that the scattered outgoing electron is described by a Coulomb wave.

The final excited state φ f (r2) satisfies
(
−1

2
∇2

2−
ZN

r2
− εn

)
φ f (r2) = 0 (56)

where εn =−0.5Z2
N/n2 is the energy of the excited state.

The T-matrix element for a transition from an initial state to a final state is then
given by

fexci = 〈ϕ−k f
(r1)φ f (r2)|Vi|ϕki

(r1)φi(r2)〉, (57)

where Vi is given by Eq. (46). The differential cross section (DCS) for this transition
is given by

dσexci

dΩ
= (2π)4 k f

ki

(
3
4
| fexci−gexci|2 +

1
4
| fexci +gexci|2

)
(58)

where the exchange amplitude gexci is calculated from

gexci = 〈ϕ−k f
(r2)φ f (r1)|Vi|ϕki

(r1)φi(r2)〉. (59)

The (e,2e) and the excitation cross sections presented here are for the collisions
of free electrons with an atomic ion. In the collisions by the rescattering electrons
with the parent ion, one should preserve the spin of the total system. Thus if the
target is helium, for example, the total spin of the returning electron and the target
He+ ion should be spin singlet. In this case, the triplet contributions in Eqs. (53) and
(58) should be dropped.

2.9 Laser-induced medium energy electron diffraction of molecules

The scattering theories presented here are mostly for atomic targets. Similar theo-
ries can be and have been generalized to molecular targets. In most cases, electron
scattering or photoionization of molecules are rather complicated and will not be de-
scribed here. With the additional degrees of freedom for molecules, such calculation
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would be very time consuming. However, there are situations where such calcula-
tions are quite simple. It is the so-called Independent Atom Model (IAM). In IAM,
a molecule is modeled as consisting of a collection of individual atoms fixed at Ri.
Let fi be the complex scattering amplitude of the ith atom alone, according to IAM,
the total scattering amplitude for a molecule fixed-in-space can be expressed as

F(k,θ ,ϕ;ΩL) = ∑
i

fieiq·Ri , (60)

where ΩL is the angle between the molecular axis with respect to the direction of the
incident electron, and q = k−k0 is the momentum transfer. The incident electron
momentum k0 is taken to be along the z-axis. The scattering cross section is then
given by

Itot(θ ,ϕ;ΩL) = IA + ∑
i 6= j

fi f ∗j eiq·Ri j , (61)

where Ri j = Ri−R j, and IA = ∑i | fi|2. Here IA is the incoherent sum of scattering
cross sections from all the atoms in the molecule. The second term, IM , is the molec-
ular interference term. For electron scattering from a sample of randomly distributed
molecules, the above expression is averaged over ΩL, and

〈Itot〉(θ) = IA + ∑
i 6= j

fi f ∗j
sin(qRi j)

qRi j
(62)

in which q and Ri j are the moduli of q and Ri j, respectively. It is interesting to note
that the molecular interference term does not vanish after the average, as pointed out
by Fano and Cohen in 1967 [14]. According to IAM, we can define the molecular
contrast factor (MCF) as

γ =
1
IA

∑
i 6= j

fi f ∗j
sin(qRi j)

qRi j
. (63)

In the traditional gas-phase electron diffraction (GED) where molecules are ran-
domly distributed, an inverse sine transform was used to derive the interatomic sep-
aration distributions from Eq. (62). In GED, typical incident electrons have energies
in the tens and hundreds of keV, and the scattered electrons are collected in the
forward directions. From Section 2.4, for HATI spectra, clearly the DCS can be
extracted from the photoelectron momentum spectra generated by infrared lasers.
However, the returning electron for a molecule in a laser field with Ponderomotive
energy Up can only reach a maximum energy of about 3.2 Up. For typical 800 nm
Ti-Sa lasers, the returning electrons have energies near or below 50 eV. Thus the
standard GED theory cannot be applied. However, as shown in Fig. 3, the DCS of
CO2 at large angles are well-described by the IAM model for incident electron en-
ergies above about 50 eV, for molecules that are randomly distributed. The results in
Fig. 3 indicates that DCS extracted from the HATI spectra for molecular targets may
be used to obtain the target information if the returning electron energies are above
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50 eV. Such returning energies can be easily achieved using mid-infrared (MIR)
lasers. Since the IAM is the basis of the GED, this implies that molecular structure
can also be retrieved from diffraction images generated by MIR lasers. This further
implies that MIR lasers can be used to study the time-dependent structural change
of a molecule. The temporal resolution of such measurement is determined by the
pulse durations which are in the order of few femtoseconds. Further development of
dynamic chemical imaging of molecules with infrared lasers is awaiting for HATI
electron spectra from aligned molecules.
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Fig. 3 Elastic scattering cross sections at large angles between electrons and isotropically dis-
tributed CO2 molecules. The experimental data [15, 16] are compared to the theoretical prediction
of the Independent Atom Model, showing poor agreement at 20 eV, but general good agreement at
higher collision energies.

3 Summary

In this Chapter we summarize the elements of basic scattering theory for dynamic
chemical imaging with infrared lasers. These scattering theories have been devel-
oped in the conventional energy domain physics for studying the structure of atoms
and molecules. Based on the quantitative rescattering (QRS) theory we demon-
strated that the same field-free collision theory can be used for describing time-
resolved studies of transient atomic and molecular systems. Clearly, even for the
time-dependent systems, experimentally it is the energy, momentum or charge of
the atomic and molecular systems that are measured. By taking advantage of the
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basic scattering theories developed over the years directly for the study of time-
dependent systems, one does not need to develop all the new tools for studying
quantum imaging problems. In the meanwhile, by utilizing the coherent nature of
the returning electron wave packet or the coherent harmonic light sources, studies
in ultrafast atomic and molecular processes would reveal new features that cannot
be revealed in the conventional energy-domain studies.
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