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Theory of ultrafast autoionization dynamics of Fano resonances
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We study atomic autoionization processes in the time domain. With the emerging attosecond extreme vacuum
ultraviolet and soft x-ray pulses, we first address how to characterize the time evolution of the decay of a discrete
state into a degenerate continuum. A short pump beam generates a number of resonance states in a series and the
nearby background continuum, and the resultant wave packet evolves with time until the full decay of the bound
states. Taking the 2pns(1P o) resonance series embedded in the 2sεp(1P o) continuum in a beryllium atom as an
example, the time evolution of the autoionizing wave packet in the energy domain and in coordinate space is
calculated and analyzed, where Fano profiles build up in the photoelectron energy during the process. A proposed
pump-probe scheme assumes that the probe beam ionizes the 2s inner electron in the wave packet. The lifetimes
of the resonances and the photoelectron energy distribution can be obtained from the ionization yield vs. the time
delay of the probe.
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I. INTRODUCTION

Scattering processes—photoionization, electron collision,
etc.—have been important tools for studying physical systems
since the early days of the development of atomic theories.
Autoionization, first observed by Beutler [1] in the photoab-
sorption of rare gas atoms, is a phenomenon where the energy
spectrum is characterized by asymmetric resonance peaks,
which were explained by Fano in his seminal paper in 1961 [2].
In this paper, asymmetric resonance in photoabsorption occurs
in the energy region where a discrete state is embedded in
the continuum. Photoabsorption populates both the discrete
state and the continuum states. The interaction of the discrete
state with the continuum results in the “autoionization” of the
former, where the discrete state interferes with the directly
populated continuum states to form asymmetric Beutler-Fano
profile. Today, Fano resonances have been used to describe
a wealth of physical phenomena in atomic, molecular, and
optical systems, condensed matter systems [3,4], nanostruc-
tures [5], and many other fields. Essential to Fano’s theory is
that each resonance can be characterized by three parameters,
the “unshifted” resonance position Er , the shape parameter q,
and the resonance width �. The resonance width characterizes
the decay time or the lifetime of the discrete state. Since the
typical resonance width of an atomic or molecular system
is of the order of 10−1 eV, which corresponds to a lifetime
as short as a few femtoseconds, almost all measurements
on these resonances have been carried out in the energy
domain, using high-resolution spectroscopy. Today a large
set of experimental and theoretical data on these resonances
has been collected, and they provide important structural
information of the systems.

In the past decade, with the advent of laser technology,
single attosecond pulses (SAPs) are becoming available [6].
Such pulses opened up a new research platform for studying
electronic dynamics, such as autoionization dynamics. Indeed,
the first SAP experiment in an atomic system was to determine
the lifetime of the Auger decay of an M-shell hole in Kr created
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by an extreme vacuum ultraviolet (XUV) attosecond pulse by
Drescher et al. [7]. For Auger decay, the resonance profile
is mostly symmetric, and thus only the decay width or the
lifetime of the inner-shell hole was determined. In Ref. [7],
the lifetime is determined by creating the inner-shell hole
in the presence of an IR laser. By changing the time delay
between the XUV pulse and the IR, photoelectron spectra can
be used to “deduce” the lifetime of the inner-shell hole—based
on the approximate “streaking” theory [8]. This streaking
theory has been generalized to Fano resonances by Zhao and
Lin [9] as well as by others [10,11]. However, the photoelectron
spectra from this XUV + IR setup are very complicated and
only the lifetime of the Fano resonance can be extracted.

Due to the insufficient fluence of the SAPs so far, existing
measurements using attosecond pulses for Auger decay or
autoionization have all been carried out using the XUV + IR
pump-probe setup where the two pulses actually overlap in
time [7,12,13]. Rigorously speaking, the IR is not probing
the resonances created by the attosecond XUV pulse in
these experiments since the photoelectron is created in the
IR field. With improved technology in attosecond pulse
generation and the recent advances in x-ray free-electron
lasers, we envision that intense attosecond pulses will become
available in the near-future, such that a true time-dependent
investigation of the autoionization process will be possible.
In this article, we analyze the time evolution of a Fano
resonance or the autoionization dynamics of the system in
the field-free condition before the discrete state fully decays
into the continuum. For example, if the discrete state has a
lifetime of 20 fs while the pump pulse is only 1.5 fs, we ask
what is the time evolution of the wave packet associated with
the decay process after the pump pulse and how the energy
profile eventually evolves into what is characterized by the
Fano resonance shape.

We comment that the time evolution of a Fano resonance
has been studied in several calculations by solving the time-
dependent Schrödinger equation of helium or a model atom
[10,14–16], with or without an IR probe. These studies did not
address how to retrieve the time evolution of the resonance
profiles. Similarly, autoionization of double Rydberg states
on the time scale of picoseconds has been studied [17].
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In the meanwhile, the interaction of a doubly excited state
with a whole Rydberg series also falls into a similar category
[18,19]. Understanding the time evolution of two-electron
wave packets and the issue of how to probe their evolution
lie at the heart of understanding and controlling two-electron
dynamics.

In this article, we use two pulses that are separate in time.
The probe is always placed strictly after the pump so that the
field-free evolution between the pulses can be defined.
The physical process is understood roughly as the decaying
of the bound state to the continuum due to the interaction
between them. In Sec. II, starting with Fano theory, which
is for stationary states, we construct a time-dependent wave
function of the system which describes the time evolution
of the electron wave packet after the pump pulse. The wave
function is recast in the basis set of the bound state and the
continuum states, where it contains the time information for
the bound and the continuum components. The wave packet
for the continuum part is shown to evolve to the typical
Fano resonance profile over a long time. We thus define the
continuum wave packet over a short time as the time-dependent
Fano profile of the autoionization. Since the pump pulse is
short, it inevitably spans a broadband in the energy spectra.
Assuming that the background energy spectrum generated by
the pump is described by a Gaussian distribution, we generalize
the theory to include all resonances within the bandwidth. In
Sec. III we apply our theory to the resonances in beryllium
to investigate wave packet dynamics after the pump pulse.
In Sec. IV we demonstrate how to probe time-dependent
Fano resonances, using the example of beryllium given in
Sec. III. A short summary and future outlook are given in
Sec. V.

II. THEORY

A. Fano’s theory of resonance

In a multielectron atomic system, high-lying discrete states
are embedded in the continuous spectrum if these discrete
energies are higher than the binding energy. Both the bound and
the continuum states are described in terms of configurations.
According to Ref. [2], with one bound state and its nearby
continuum, the system is governed by the total Hamiltonian
given by

〈α|H |α〉 = Er, (1)

〈βE |H |α〉 = VE, (2)

〈βE′ |H |βE〉 = Eδ(E′ − E), (3)

where |α〉 and |βE〉 are the bound and continuum config-
urations, respectively. The off-diagonal terms VE represent
the mixing strength between the bound and the continuum.
The diagonal terms Er and E are the bound and continuum
energies, respectively.

The eigenstates |ψE〉 of the atom are obtained by diag-
onalizing the Hamiltonian in Eqs. (1)–(3) and are given by
Fano as

|ψE〉 = aE |α〉 +
∫

bEE′ |βE′ 〉dE′, (4)

where the coefficients are

aE = sin �

πV
, (5)

bEE′ = 1

π

sin �

E − E′ − δ(E − E′) cos �, (6)

� ≡ − arctan
πV 2

E − Er

. (7)

Here we assume that VE = V is a real constant in the narrow
energy region for each Fano resonance, provided that the bound
and the continuum states are in real representation.

Originally Fano’s theory was applied to photoabsorption
processes. The transition amplitude is cE ≡ 〈ψE |T |g〉, where
|g〉 is the ground state, |ψE〉 is the excited state of energy E,
and T is the photon transition operator. States |g〉 and |ψE〉 are
eigenstates of the atomic Hamiltonian H , so the coefficients
cE do not change with time. In Ref. [2], the continuum wave
functions are taken to be real standing waves. The absorption
cross section is proportional to |cE|2, which contains the
features of Fano profiles. Until recently, all photoabsorption
measurements are performed using light sources of hundreds
of picoseconds or longer, where they can be considered
monochromatic. Thus, |ψE〉 of a single E is promoted in each
measurement. To trace out a Fano resonance, monochromatic
lights are tuned across the resonance while the cross section
for each energy point is recorded.

Although Fano’s theory was applied to photoabsorption
originally, it can be trivially generalized to study photoelectron
angular distributions. While the continuum functions in Eq. (4)
are taken to be real standing waves, |ψE〉 is an eigenstate of the
Hamiltonian. To obtain the scattering amplitude for an electron
with momentum �k, one only needs to project the standing wave
onto the momentum eigenstate �k of the photoelectrons, given,
in energy-normalized form, by

ψ�k(�r) =
√

2

πk

1

r

∑
lm

ileiηl ul(kr)Ylm(r̂)Y ∗
lm(k̂). (8)

Here ul(kr) are the radial wave function of the electron taken
as real standing waves as in Fano’s theory, ηl are the total
scattering phase shifts, and the Y s are spherical harmonic
functions.

Following the notation in Ref. [2], the width of the
resonance is defined by � ≡ 2πV 2. Assuming that 〈βE|T |g〉
is energy independent near the resonance energy Er , the q

parameter is defined by

q ≡ 〈α|T |g〉
πV 〈βE|T |g〉 . (9)

Without the flat-background and the constant-V assumptions,
|α〉 will be replaced by the “modified bound state” defined
in Ref. [2], which contains a term based on uneven VE and
|βE〉 near Er . We assume that this modification is negligible
in general cases and consider the q parameter as defined in
Eq. (9). Fano’s theory predicts the resonance profile in a simple
form, where the associated parameters Er , �, and q can be
extracted by fitting the form to the measured profile.

With the advent of available light pulses of a few femtosec-
onds or shorter, one can use such a short pulse to ionize the
atom. After the pump pulse is over, the time-dependent wave
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function of the atom is given by

|
(t)〉 = cge
−iEgt |g〉 +

∫
cEe−iEt |ψE〉dE, (10)

where, in a single pulse, the integral in Eq. (10) covers
a bandwidth more than the width of a resonance. Such
a resonance can be measured, long after the pump, in a
high-resolution spectrometer. This amounts to projecting out
the time-dependent wave function |
(t)〉 over a long time.
Thus the whole Fano resonance is generated in a single pulse
and its profile is given by |cE|2.

We now consider the situation where the pump pulse is
shorter than the lifetime of a Fano resonance. One would like
to “see” the dynamics of the autoionization. However, this
information is not contained in |cE|2 since |ψE〉 are eigenstates
of the atomic Hamiltonian and the coefficients cE are constant
when the pump field is absent. Thus in Eq. (10), the time
information is hidden and not recognized, even though we
“know” that autoionization is happening!

B. Time-dependent wave function in a configuration basis

It is convenient to define the excited wave function
|
ex(t)〉 as the total wave function |
(t)〉 excluding the
ground-state part since the ground state does not participate
in autoionization. Instead of using eigenstates as expressed
in Eq. (10), we alternatively expand the excited wave function
in a configuration basis as

|
ex(t)〉 = dα(t)|α〉 +
∫

dE(t)|βE〉dE. (11)

Since |α〉 and |βE〉 are not eigenstates of the atomic Hamil-
tonian, the coefficients dα(t) and dE(t) are time dependent.
One expects that at a long time (compared to the lifetime),
the coefficient dα(t) will go to 0 and all the information
on the total wave function will be contained in dE(t). However,
the time evolution of these coefficients cannot be measured in
the laboratory: they change over a time scale of femtoseconds
or less, while laboratory electronics can only measure changes
of the order of picoseconds or longer. Here we define |dE(t)|2
as the “time-dependent Fano resonance profile” or, in short,
the “resonance profile.” Here we discuss how these coefficients
behave. The measurement issues are addressed later.

Assuming that the initial values of dα(t) and dE(t) are
known, with the aid of Eqs. (4)–(7), the time-dependent
coefficients are solved and given by

dα(t) =
[
d (0)

α e− �
2 t +

∫
d

(0)
E gE(t)dE

]
e−iEr t , (12)

dE(t) =
[
d (0)

α gE(t) +
∫

d
(0)
E′ fEE′(t)dE′

]
e−iEr t + d

(0)
E e−iEt ,

(13)

where the functions gE(t) and fEE′(t) are defined by

gE(t) ≡ V

E − Er + i�/2
[e−i(E−Er )t − e− �

2 t ], (14)

fEE′(t) ≡ V

E − E′ [gE(t) − gE′(t)]. (15)

The superscript (0) denotes the initial values, that is,

d (0)
α = 〈α|
(0)〉, (16)

d
(0)
E = 〈βE |
(0)〉. (17)

The solutions in Eqs. (12)–(15) are calculated exactly for a
given set of parameters d (0)

α , d
(0)
E , Er , and �, where these

parameters can be either obtained by running a separate pro-
gram such as the time-dependent Schrödinger equation code
or time-dependent perturbation calculation, based on prior
knowledge of the pump, or extracted from the experimental
values in the time-integrated spectrum. In the latter case, with
q defined by Eq. (9) and rewritten as

q ≡ d (0)
α

πV d
(0)
E

∣∣∣∣∣
E=Er

, (18)

the initial coefficient d (0)
α can be extracted since the value of

q and the background magnitude of d
(0)
E can be obtained from

the Fano profile after a long time [the phase of d
(0)
E can be

deduced if photoelectron angular distributions are measured].
Equations (12)–(15) are the backbone of our model.

Note that the initial coefficients d (0)
α and d

(0)
E are, in general,

complex values, while q is real. Within the narrow range of a
resonance width, the energy E in d

(0)
E is close to the bound-state

energy Er such that the phases of d (0)
α and d

(0)
E are assumed

to be the same in the neighborhood of the resonance, and
the corresponding q, representing the ratio between d (0)

α and
d

(0)
E , is real. When d

(0)
E spans a wide energy range covering

many resonances, its phase varies smoothly with E, but in
each resonance region, the preceding statement is still true,
and each q is real.

The decay lifetime of the bound state is defined as T ≡
1/�. Rigorously speaking, the dynamics of the autoionization
is about not only the decay of the bound state, but also its
coupling to the continuum [see Eq. (11)]. The wave packet can
propagate from the continuum to the bound state or the other
way around, or between continuum states of different energies
through the bound state. Thus, the lifetime T , determined by
the interaction matrix V , characterizes the time scale of the
whole event.

We can generalize Eqs. (12)–(15) to include multiple
resonances by applying Fano’s theory for many bound states
[2] and assuming that higher-order perturbation by V is
negligible. The excited wave function is


ex(t) =
∑

n

dn(t)|αn〉 +
∫

dE(t)|βE〉dE, (19)

with the coefficients given by

dn(t) =
[
d (0)

n e− �n
2 t +

∫
d

(0)
E gnE(t)dE

]
e−iEnt , (20)

dE(t) =
∑

n

{[
dn(t)gnE(t) +

∫
d

(0)
E′ fnEE′(t)dE′

]
e−iEnt

}

+ d
(0)
E e−iEt , (21)

where the label n is the index for the nth bound state. The
g function and the f function, now subscripted with n,
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are calculated independently for each resonance, with the
associated parameters as given by Eqs. (14) and (15).

To simulate the effect of the finite range of V while keeping
the calculation simple, the profiles can be further adjusted by
multiplying each “resonance term” in Eq. (21) (in the curly
braces) by a Gaussian window function to limit the range
of each resonance. For an isolated resonance, the effect of
the window function is minimum or unnecessary because the
window function mainly removes “the wings,” but not the
center, of the resonance, where the central part is
the significant and informative part. In contrast, when dealing
with many resonances, without the window functions, the
wings may be overly extended and unnaturally perturb the
nearby resonances. In the latter case, multiplying the window
functions is an effective and efficient solution.

1. Flat initial continuum (IC) distributions

To study the qualitative behavior of the wave function, we
first assume that the initial profile is flat, that is, d

(0)
E = const.

This initial continuum, dubbed IC1, is valid near the resonance
positions if the pump bandwidth is broad enough relative to the
resonance widths that the populated profile is nearly flat around
Er . For conceptual presentation, only the single-resonance
formulas, Eqs. (12)–(15) are referred to here, while the idea
is the same for the many-resonance case. Defining the scaled
time s as s ≡ �t and the scaled energy ε as ε ≡ 2(E − Er )/�,
the bound and the continuum coefficients under the IC1 are

dα(s) = d (0)
α

(
1 − i

q

)
e− 1

2 s , (22)

dε(s) = d (0)
ε

1

ε + i
[(q + ε)e− i

2 εs − (q − i)e− 1
2 s], (23)

where, in the scaled energy, the q parameter becomes

q ≡ d (0)
α

πV d
(0)
ε

, (24)

and the factor e−iEr t disappears because ε is measured relative
to the resonance energy. While the coefficients given by
Eqs. (22) and (23) represent the evolution for s > 0, their limits
at s → 0 are different from the initial coefficients d (0)

α and d (0)
ε

that we have defined at s = 0. This discontinuity means an
immediate jump of the wave function right after evolution
starts. This unphysical behavior is due to the integral of the
g function in Eq. (14) and f function in Eq. (15) over infinite
energy range at very short times, where contributions from E

that are much higher or lower than Er are misleadingly counted
in, while in practice, only the energy range comparable to �

should be considered. Nevertheless, the long-time behavior is
reliable since both the g and the f functions are compressed
more and more into the near-resonance region with increasing
time.

In the s → ∞ limit in Eqs. (22) and (23), the bound state
decays to 0, but the continuum recovers the general form of
the Fano profile:

lim
s→∞ |dε(s)|2 = ∣∣d (0)

ε

∣∣2 |ε + q|2
ε2 + 1

. (25)

We emphasize that Eq. (25) is a mathematical consequence.
It cannot be obtained from the measurement since continuum
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FIG. 1. (Color online) Resonance profile |dε(s)|2 calculated by
Eq. (23) for (a) q → ∞, (b) q = 2, (c) q = 1, and (d) q = 0. In
(b)–(d), |d (0)

ε |2 is normalized to 1. In all cases, the profile builds up
with time, with small oscillations in energy, before reaching the final
Fano profile.

configurations are not eigenstates of the total atomic Hamil-
tonian. In the special case where d (0)

α = 1 and d (0)
ε = 0, the

system starts with only the bound state, and the Lorentz profile
will be recovered as s → ∞; that is,

lim
s→∞ |dε(s)|2 = 1

π

1

ε2 + 1
. (26)

Figure 1 shows the spectra at different times for q → ∞,
q = 2, q = 1, and q = 0. Each plot demonstrates how its
spectrum morphs into the Fano profile. A feature found in
the profile is the oscillation in the wings during evolution,
which shrinks its energy period when the time increases,
and disappears as s → ∞. This oscillation, due to the phase
between the two exponential terms in Eq. (23), is not seen in the
conventional time-integrated spectra. Although analytically
simple, the IC1 simplification is conceptually rich and offers
an easy visualization of the autoionization process.

2. Gaussian initial continuum distributions

The condition IC1 is valid only in the vicinity of a resonance
and is not applicable to the whole energy range. When a short
pump pulse is used to initiate the system, one should cover
its whole bandwidth and the state vectors must be properly
normalized. Here we consider the normalization where the
total probability for the bound component

∑
n |dn(t)|2 plus

the continuum component
∫ |dE(t)|2dE is set to 1.0, where the

ground state |g〉 is not considered since it is not involved in the
autoionization. This normalization is automatically fulfilled by
the exact solution once the initial coefficients are normalized.
Additionally, we assume that the pump pulse has a Gaussian
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FIG. 2. (Color online) The resonance profile for the two ICs.
Solid curves are carried out with the IC2 defined by q = 1 and the
FWHM bandwidth of 15�, or D = 9�. Dashed curves were carried
out under the IC1.

envelope, resulting in a Gaussian profile in energy. The initial
coefficients are given by

d (0)
n = γ qnπVn exp

[
−1

2

(
En − ω

D

)2
]
, (27)

d
(0)
E = γ exp

[
−1

2

(
E − ω

D

)2
]
, (28)

where

1

γ 2
≡ √

πD +
∑

n

(qnπVn)2 exp

[
−

(
En − ω

D

)2
]
. (29)

This initial continuum is dubbed the IC2. The initial continuum
state has a Gaussian energy distribution centered at ω with
standard deviation D (FWHM = 1.665D). The initial coeffi-
cients are determined by the pump width and the resonance
parameters En, �n (or, equivalently, Vn), and qn. For D 
 �n,
the IC2 is reduced back to the IC1 near the nth resonance.
A comparison of the profiles under the IC1 versus the IC2 is
plotted in Fig. 2 for q = 1, where the bandwidth (FWHM)
for the IC2 is 15�. As shown in Fig. 2, with the modification
from the IC1 to the IC2, the s = 0 profile changes from a
flat background to a Gaussian shape, and the s = 1 and s = 2
profiles change similarly. However, the featuring structures are
preserved. The modification should be slight if the bandwidth
is much wider than �, which is true for a sufficiently short
pump.

3. Growth and decay of a bound state

Considering an isolated resonance, in the IC1, the total
bound state is an exponential decay function of time as
described by Eq. (22). However, under the normalization
condition of the IC2, which is more realistic, the bound-state
decay is not necessarily monotonic. For the IC2 solution, the
bound-state coefficient in Eq. (12) and its two terms are shown
in Fig. 3 in their absolute squares. Figures 3(a) and 3(b)
are for two initial bandwidths of the continuum centered at
the resonance. The first term, which comes from the initial
bound state, is always an exponential decay. The second term,
which comes from the IC, goes through a rising period up to
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FIG. 3. (Color online) Bound-state coefficient defined by Eq. (12)
and its compositions for q = 1 and (a) D = 10� and (b) D = 20�,
where D is the standard deviation of the pump beam (see Sec. II B 3).
When D increases relative to �, the rising portion of the second term
at the beginning of time gets shorter, and in the limit D 
 �, Eq. (22)
(IC1) is recovered.

about s = 0.2 in Fig. 3(a) and s = 0.1 in Fig. 3(b) before it
decays. This rising period will shorten if the initial bandwidth
increases or the pump duration shortens. In the limit of an
infinite bandwidth, both the first and the second terms will be
monotonic decay functions, and the solution in the IC1 will be
recovered. Note that even in a situation where the length of the
rising period is comparable to the lifetime, such as Fig. 3(a)
shows, the total bound-state population will eventually be
dominated by the exponential decay. This growth part of the
bound state is usually much shorter than the decay lifetime, so
to “watch” this detail structure, a higher temporal resolution is
required.

In the special case for d (0)
α = 0, the pump pulse does not

directly populate the bound state of the system. The q param-
eter defined by Eq. (18) is 0. However, this definition is based
on the assumption that V and the continuum background are
constant near the resonance, and it excludes the modification
term for the bound state. In an actual situation where no
original bound state |α〉 was populated, the theory needs to
be modified to include higher-order terms. Nonetheless, even
if we neglect the initial population of the original and the
modified bound state, the time-dependent probability as given
by Eq. (12) will still have a contribution from the initial con-
tinuum population d

(0)
E . In other words, we will still have the

“decay” of the bound state even if it was not populated by the
pump pulse. This somewhat awkward result is best understood
in the following way. First, recall that the initial bound-state
population depends on the transition operator connecting it
to the ground state, while the “configuration interaction” V ,
which connects the bound state to the continuum, is always
present. This “configuration interaction” feeds the bound state
from the continuum, but the continuum states also draw the
bound-state component and take it to large distances. If these
continuum states were substituted with highly excited bound
states, the outer electron would return to recollide with the
inner electron(s) and repopulate the bound state. This would
correspond to situations studied in Ref. [17–19]. To initiate the
oscillation, the bound state does not have to be excited by the
pump pulse. The ever-present “configuration interaction” is the
one which is responsible for the oscillation. This “interaction”
is the property of the Hilbert space but not of the specific
excitation mechanism.
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III. APPLICATION TO RESONANCES IN Be

In atomic systems, autoionization is understood only in the
multiple-electron picture where electron-electron correlation
is considered. Our theory is applied here to calculate the
autoionizing wave packet of the 2p4s(1P o) resonance and of
the 2pns(1P o) (n = 3 to 9) resonance series embedded in the
2sEp(1P o) continuum in the beryllium atom, generated by the
photoionization from the 2s2(1Se) ground state. For a short
pump, we assume that the IC distribution can be approximated
by a Gaussian distribution. Only the two outer electrons in
beryllium are assumed to be active, and the 1s2 core electrons
are frozen. The bound orbitals are Slater-type orbitals, where
their analytical forms are determined by fitting the numerical
Hartree-Fock calculations. The continuum basis functions are
calculated with the model potential given in the literature [20]
for l = 1 standing waves [21]. The resonance parameters are
taken from the experiment by Wehlitz et al. [22], where Er

is 2.789 eV above the ionization threshold, q = −0.52, and
� = 0.174 eV, or T = 3.78 fs. The pump beam has the carrier
frequency right at the resonance and the duration of 2 fs, or a
mean bandwidth of 0.912 eV.

For the 2p4s resonance case, the excited wave function,
Eq. (11), is given by


ex( �r1, �r2; t) = d2p4s(t)φ2p4s( �r1, �r2)

+
∫

dE′(t)φ2sE′p( �r1, �r2) dE′, (30)

where the φ functions are constructed by corresponding bound
orbitals and continuum waves, and symmetrized between the
two electrons. The one-electron density is defined by

ρ(r1,t) =
∫ ∫

|
ex( �r1, �r2; t)|2r2
1 r2

2 d�1d�2dr2, (31)

where the integral sums over the angular dependence as well
as the radial part of one of the electrons. In the large-r region,
ρ(r1,t) represents the electron density of the autoionizing
electron. In this section, energy, time, and distance are in
electronvolts (eV), femtoseconds (fs), and Bohr radius (a.u.),
respectively, unless specified otherwise. The bandwidth in
energy and the duration in time are defined in the FWHM.

First, we show how the wave packet moves in the coordinate
space. Figure 4(a) displays the electron density at t = 0, 2,
and 4 fs, where the time scale is about the lifetime of the
resonance T = 3.78 fs. Before the propagation starts (t = 0), a
dominant spatial distribution covers 0–60 a.u. This distribution
is mainly contributed by the continuum, where the percentage
initial bound state is as low as 7%. The spatial oscillation
with a period of about 10–15 a.u., or a wave number of about
0.4–0.6 a.u., matches the energy distribution centered at the
resonance energy of 2.789 eV. As time goes on, the electron
wave packet moves outward toward large r . When the time
is long compared with the autoionization lifetime, the motion
of the electron wave packet can be analyzed more easily. In
Fig. 4(b), the long-time behavior of the wave packet is plotted
for t = 40, 80, 120, and 160 fs. The electron is always confined
in some spatial range, but it gradually spreads wider when the
time increases. By recognizing and tracing the two dominant
peaks in Fig. 4(b) over time, we find that the corresponding
velocities are almost constant. It is similar to a free electron
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FIG. 4. (Color online) Electron density for the 2p4s resonance in
Be with a pump pulse of 2 fs and central frequency at the resonance.
The decay lifetime of the resonance is 3.78 fs. The electron density
is shown for (a) short-time behavior, at t = 0, 2, and 4 fs, and for
(b) long-time behavior, at t = 40, 80, 120, and 160 fs.

wave packet traveling in space, where its average velocity
keeps the same, but its spatial distribution spreads. In this long
time regime, the electron moves in a very predictable way to
the large distance toward the detector.

Next, we discuss the evolution of the resonance profile
|dE(t)|2, that is, the time-dependent Fano profile, for the same
wave packet as in Eq. (30). In Fig. 5(a), the photoelectron
energy profile is shown at t = 0, 1.5, 3, and 4.5 fs, that is, near
the lifetime of the resonance T = 3.78 fs. The profile starts
evolving with a Gaussian shape at t = 0 determined by the
pump pulse and changes quickly within its lifetime. At t = 4.5,
just a little longer than the lifetime, the double-peaked shape
characteristic of autoionization can be seen, but the shape is not
quite “settled” into the Fano profile. The long-time behavior
is shown in Fig. 5(b). At t = 10 to 20 fs, the resonance profile
is already quite close to the final Fano profile that can be
determined in the standard energy domain measurements. It
is also physically sensible that the electron velocities shown
in Fig. 4(b) can be mapped onto, although not exactly, the
energies of the two highest peaks in Fig. 5(b).

We have discussed an isolated resonance. Practically, a
short pump pulse is likely to populate more resonances at once.
Here we consider the case including the 2pns resonances up
to 2p9s in Be. Even though the 2p2s state (about 5.277 eV
above the ground state [23]) is lower than the 2s threshold and
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FIG. 5. (Color online) Resonance profile |dE′ (t)|2 for the 2p4s

autoionization in Be, at (a) t = 0, 1.5, 3, and 4.5 fs and at (b) t = 10,
20, and 40 fs.

will not show up in the continuum profile, it can, in general,
interact with the continuum beyond the 2s threshold and is
included in the present calculation. The parameters for these
resonances are generated by setting µ = 0.6, �ν3 = 0.71 eV,
and q = −0.8, where µ is the quantum defect and ν is the
effective quantum number. The first few widths, starting from
2p3s, are 0.514, 0.181, 0.0833, and 0.0451 eV, and the decay
lifetimes are 1.28, 3.64, 7.90, and 14.6 fs, respectively. The
2pns resonance series stretches between the 2s threshold and
the 2p threshold, a range of about 4 eV. Our attention is
directed at the time scale and energy scale of this series. The IC
distribution is set to be centered at 2.3 eV above the ionization
threshold, with a bandwidth of 1.825 eV, or pump duration
of 1 fs. The bandwidth covering the resonances of interest
is limited to the energy range above the 2s threshold to avoid
unnecessary complications. Each resonance term in Eq. (21) is
multiplied by a Gaussian window whose width is 2� to narrow
down the interaction V to some finite range in the calculation.
The resultant resonance profiles are displayed in Fig. 6, along
with the experimental photoabsorption cross-section values
in Ref. [22], plotted by the light-gray curve and normalized
to fit in the vertical range of our calculation. The 2pns

resonance series is shown in the experiment from low to
high energy, starting with 2p3s at about 1.5 eV. For the
calculation, Fig. 6 shows how the profiles evolve in time and
are finalized, where the lower (wider) resonances build up
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FIG. 6. (Color online) Calculated resonance profiles for the
2pns(1P o) resonances at t = 0, 4, 8, and 160 fs in Be, and
experimental photoabsorption cross section in Be between the 2s

and the 2p thresholds [22]. Experimental values are normalized to
the vertical range of the calculation.

quickly and the higher (narrower) resonances slowly. At short
times, the continuum must be viewed as a whole distribution
which gives no information on individual resonances; only at
long times, for example, t = 160 fs, the profiles assigned to
individual resonances are shown. Nonetheless, our calculation
and the experiment in Ref. [22] should not be compared with
each other directly. In the present work, a short pump pulse
covers a wide energy range; the system propagates coherently
with time. In contrast, the experiment in Ref. [22] was done
with many independent incoherent measurements, where each
measurement was made for a single energy point using a long
pulse of at least of hundreds of picoseconds and gives back a
single quantity for the cross section.

We caution the readers that the time-dependent resonance
profile shown in Fig. 6 is from theoretical calculations only,
that is, a plot of |dE(t)|2 vs E for different time delays after
the pump pulse. As emphasized earlier, |dE(t)|2 cannot be
measured directly in the laboratory since any physical mea-
surement will take at least many picoseconds, which cannot
distinguish time evolution that happens on the femtosecond
scale. In addition, the wave functions associated with the
coefficients dE(t) in Eq. (19) are not eigenstates of the atom
such that |dE(t)|2 cannot be directly interpreted as measurable
probabilities.

IV. METHOD OF PROBING THE TIME-DEPENDENT
AUTOIONIZATION PROCESSES

After we have predicted how the wave packet in the
autoionization process evolves with time, an experimental
scheme where such predictions can be confirmed is essential.
Using a SAP pump and an IR probe, the lifetime of the
Auger decay of an inner-shell hole [7] or of a Fano resonance
in helium [12] have been “deduced.” The streaking of an
autoionizing electron in the IR laser field has been calculated
by Wickenhauser et al. [10]. The streaked electron spectra
are too complicated to allow the retrieval of the predicted
intermediate profiles. Taking beryllium as an example, here
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FIG. 7. (Color online) A conceptual scheme for probing the time-
dependent resonance profiles. At t = 0 the pump pulse is over and
autoionization starts while the system evolves freely. To determine
the evolving electron wave packet at time τ , a probe pulse is used to
ionize the 2s electron in the 2sEp continuum and create the E′pEp

states. After the probe is over, the new wave packet consists of a
part of the old wave packet which continues to evolve and autoionize
(upper row) and the newly generated part made of E′pEp states
(lower row). The latter does not change with time. By picking the
responsible energy range and collecting the double-ionized signals,
the resonance profile in the autoionization at moment τ is captured.

we propose a way to measure the time dependence of Fano
profiles.

The probe scheme is sketched in Fig. 7. After the pump, we
define the starting time for the autoionization as t = 0 such that
the pump field is finished for t > 0. A probe pulse is shined
onto the system with its peak at time delay τ . The probe has
the duration of 1.5 fs, or bandwidth of 1.216 eV, and carrier
energy ω of 40 eV. This probe pulse ionizes the 2s electron in
the 2sEp continuum (binding energy of 2s is 18.21 eV). After
the probe pulse is over, the excited wave packet in Eq. (30)
changes to

|
ex(t)〉 =
∑

n

dn(t)|2pns〉 +
∫

d̄E(t)|2sEp〉dE

+
∫ ∫

dE′E(t)|E′pEp〉dE′dE. (32)

We have assumed that the 2pns bound states are not changed
by the probe pulse, and only a small portion of the 2sEp

continuum states is ionized [thus the amplitude now given by
d̄E(t) is slightly different from dE(t)] to generate new E′pEp

states. After the probe pulse, both dn(t) and d̄E(t) continue
to change with time as the bound states decay. The newly
created E′pEp states are eigenstates of the atomic (field-free)
Hamiltonian and are stationary states, and they can thus be
probed by a laboratory detector. Using 40-eV probe pulses, the
energy E′ will be centered around 21.8 eV, well separated from
the electron energy of 2.5 eV due to autoionization. Clearly
the probability |dE′E(t)|2 should be independent of time and
is proportional to |dE(τ )|2. To determine |dE(τ )|2 one can
measure the energies of the two electrons in coincidence or
by measuring the low-energy electrons in coincidence with
Be2+ ions. Either way, the lower-energy group duplicates the
original continuum profile at the moment of the probe. By
changing the delay time of the probe, a copy of |dE(τ )|2
can be determined. Due to the finite duration of the probe
pulse, the measured copy of |dE(τ )|2 will be somewhat
smoothed out.

If the probe is of perturbative strength, we can calculate the
predicted two-electron spectra quantitatively. In the presence
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FIG. 8. (Color online) Time-dependent continuum profile com-
pared with the probed profile in the Be case. (a) Calculation as
specified in Fig. 6. (b) Retrieved profile using a probe beam with
ω = 40 eV and a duration (FWHM) of 1.5 fs. Signal values have
been scaled to match the original profile at t = 160 fs. The agreement
between (a) and (b) is good.

of the external probe field �F2(t), the coefficient for E′pEp is
given by the first-order time-dependent perturbation theory by

dE′E = 〈E′pEp|U
(

T0

2
, − T0

2

) ∣∣∣∣
ex

(
−T0

2

)〉
(33)

= 1

i

∫ T0
2

− T0
2

〈E′pEp|e−iH0( T0
2 −t)V2(t)|
ex(t)〉dt (34)

= µ

i

∫ T0
2

− T0
2

e−i(E′+E)( T0
2 −t)F2(t) dE′(τ + t) dt, (35)

where V2(t) is the dipole interaction potential for the probe
pulse. The interaction is turned on only for −T0/2 < t < T0/2.
Note that t is now measured with respect to the center of
the probe, and the total excited wave function |
ex(−T0/2)〉
at t = −T0/2 has already gone through the autoionization
process for a duration of τ − T0/2. In Eqs. (33) and (34),
the time propagator exp [−iH0(T0/2 + t)] in U operates on

ex(−T0/2) and gives 
ex(t) in return. In the next step in
Eq. (35), since the bound states 2pns do not participate in
the probe process, only the continuum part is written down.
The dipole matrix element µ ≡ 〈E′p|z|2s〉 is assumed to
be a constant. The polarization of the probe field is in the
z direction, that is, �F2(t) = ẑF2(t). The retrieved profile as
a function of E is defined as

∫ |dE′E|2dE′. Figure 8 shows
very good agreement between the retrieved profile at different
τ values and the original continuum profile at the associated
time τ .

While the calculation given is in first-order perturbation, the
scheme can be applied to an intense probe as well, as long as the
probe field dominantly removes the 2s electron and has little
effect on other components in the system. The Ep electron is
not affected by the probe, and the continuum profile of 2sEp

at τ will still be transferred to E′pEp plainly (with additional
peaks possibly from two-photon ionization). The advantage of
a stronger probe is that it increases the signal rate. This may be
an important factor to realize this pump-probe scheme since
the population of double excited states by the pump can be
already weak. In the present example, the photon energy is
11.62 eV for the pump and 40 eV for the probe, presuming
that short UV sources are provided for both the pump and the
probe.
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V. CONCLUSIONS

In this paper we study the temporal behavior of the atomic
autoionization process. Following the original paper of Fano,
we treat autoionization as the decay of a discrete state into
a degenerate continuum. Fano’s theory characterizes such a
resonance with a shape parameter q and a width �, in addition
to the resonance energy position. For many decades, Fano
resonances are measured and characterized in energy domain
experiments. With the advent of XUV and soft x rays with
pulse durations of attoseconds to a few femtoseconds, we
address the question whether Fano resonances can be probed
directly in the time domain within its typical lifetime. In
particular, can we talk about the time-dependent Fano profiles
before the discrete state is fully decayed, and can such profiles
be measured experimentally?

To describe time-dependent Fano profiles, it is inconvenient
to express the total time-dependent wave function in terms
of the eigenstates of the system. Instead, the configuration
basis states, including the bound and the continuum, used in
Fano’s original theory are much more useful (or more physical)
for analyzing the autoionization process, and we are led to
define the time-dependent Fano profiles by referring to the
wave packets expanded in the continuum configuration basis
states. To probe the temporal Fano profiles with a good time

resolution, we suggest that the decay process be perturbed by
a short soft-x-ray pulse which interrupts the autoionization at
the time of the probe. The probe in the meantime creates a
stationary wave packet that can be measured in the laboratory.
We further consider many Fano resonances together if they fall
within the bandwidth of the pump pulse.

The pump-probe scheme proposed here, requiring high-
energy short pulses for both the pump and the probe, is
not yet available today. However, attosecond technology is
undergoing rapid growth, and the proposed scheme for mea-
suring autoionization dynamics may become doable within a
few years. At the same time, theory for attosecond electron
dynamics is still a barren field today. General approaches to
understanding electron dynamics for many-electron systems
are badly needed at this time. Not all probe pulses are similarly
effective in retrieving time-dependent wave packets. Without
the general theoretical framework, it would be difficult to
retrieve electron dynamics from the signals measured by the
probe pulse.
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