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We demonstrate the successful implementation of genetic algorithm for the retrieval of atomic potentials
using elastic differential cross sections �DCSs� between free electrons and atomic ions for electron energies
from a few to several tens of electron volts. Since the DCSs over this energy region can be extracted from
laser-generated high-energy photoelectron momentum spectra, the results suggest that infrared lasers can be
used to image the target structure. Extending to molecular targets, in particular, to transient molecules created
by an earlier pump pulse, our results suggest that few-cycle infrared probe lasers can be used for dynamic
chemical imaging with temporal resolution of a few femtoseconds.
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I. INTRODUCTION

When an object is illuminated by a plane wave, the am-
plitude of the diffraction pattern in the far field is the Fourier
transform of the object �1�. To achieve high spatial reso-
lution, x rays or electrons with energies on the order of tens
to hundreds of keV are used. These are powerful tools for
spatial imaging of the structure at the atomic level, but they
are not suitable for transient molecules which vary in a few
to hundreds of femtoseconds. To achieve such temporal res-
olution, new technology such as x-ray free-electron lasers
�XFELs� and ultrafast electron-diffraction �UED� �2� tech-
nologies are being developed.

Today infrared laser pulses with duration of a few femto-
seconds are widely accessible. However, these lasers have
wavelength much longer than the interatomic distances.
Hence they are considered not suitable for imaging ultrafast
structural changes in molecules. Nevertheless, the possibility
of using infrared lasers for imaging molecules from laser-
induced electron-diffraction spectra has been proposed more
than a decade ago �3�. Similarly, high-order harmonics gen-
erated by infrared lasers have also been proposed for probing
the structure of the target �4–6�. The underlying reason for
the possibility is best understood using the well-known res-
cattering model. When an atom or molecule is placed in a
laser field, electrons which are released by tunneling ioniza-
tion in the early part of the laser field may be driven back
and accelerated by the laser when its electric field changes
direction. The returning electrons may revisit the target
where they may be backscattered elastically by the ion, or
they may recombine with the ion to emit high-energy pho-
tons. Since electron scattering and photoionization are the
standard tools for probing the structure of atoms and mol-
ecules, thus in principle there is some information on the
target structure that can be extracted from the emitted elec-
trons or photons. Despite this optimism, however, few accu-
rate structural information actually has emerged from laser-
atom and laser-molecule interactions so far. This is not

unexpected since the role of target structure in the nonlinear
interaction of lasers with atoms and molecules is still not
understood at the quantitative level. In particular, prevailing
theories such as tomographic method �4�, two-center inter-
ference model �7�, and improved strong-field approximation
�8� all treat the continuum electrons by plane waves, thus
leaving out the important interaction of electrons with the
target. Thus, while these models have stimulated the interest
in the field, progress in dynamic chemical imaging is pos-
sible only after the interaction between electron and the tar-
get ion is properly treated.

Recently we have developed a quantitative rescattering
�QRS� theory �9–11� for laser-induced high-energy photo-
electron momentum spectra. Using the photoelectron mo-
mentum spectra calculated from solving the time-dependent
Schrödinger equation as well as from experimental data, we
showed that accurate elastic differential cross sections
�DCSs� between free electrons and rare-gas target ions can
be extracted. The DCSs thus obtained are in good agreement
with the DCS calculated from electron-ion collision theories,
and in one case, in agreement with experimental data taken
from electron collisions with Ar+ ions �12�. In future experi-
ments, we assume that DCS can be obtained from the mea-
sured photoelectron spectra. In this paper, we ask whether
one can extract accurate target structure information from
such DCSs. Since the energies of the returning electrons are
on the order of tens of electron volts only, the standard dif-
fraction theory where the continuum electrons are approxi-
mated as plane waves cannot be used. Instead scattering
waves should be used. In this paper we report the result of
such an attempt.

The problem of constructing the interaction potential be-
tween two colliding particles from scattering data or from the
spectroscopy data from the bound systems has been exten-
sively investigated in the past half a decade. In particular,
using elastic differential scattering cross sections from
molecular-beam experiments �13�, atom-atom or atom-
diatom interatomic potentials have been extracted �14�. The
most common approaches rely on either a phenomenological
potential parameter fitting �15� or an iterative perturbation
method �16�. More recently, Rabitz and co-workers �17� de-*junliang@phys.ksu.edu
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veloped a global, noniterative algorithm for inverting the
quantum scattering observations to obtain intermolecular po-
tentials.

Quantum-mechanical inverse scattering problems are not
as well investigated in atomic systems. Amos and co-workers
�18� extracted the spin-orbit interaction from elastic-
scattering cross sections at 5 eV between electrons with Xe
atoms. No such investigations have been carried out for the
collision between electrons with atomic ions. However, the
spectra of neutral atoms have been widely used to derive an
approximate central local potential V�r�, where r is the dis-
tance of the active electron from the atomic nucleus. Such a
model potential approach is useful most often when the at-
oms are investigated in an external field or involved in col-
lisions with other particles. The model potential is param-
etrized in some analytic form, and the parameters are chosen
such that bound-state energies calculated from the potential
V�r� are closed to experimental values.

In this paper we aim at finding a robust inversion method
which can be used to obtain accurate model potentials for
rare-gas atoms based on the differential elastic-scattering
cross sections. Specifically, we assume that experimental
elastic differential cross sections are available for large scat-
tering angles with incident electron energies in the range of
about 2.0–50 eV. The targets are Ne+, Ar+, Kr+, and Xe+ ions.
For the inversion method, we used the genetic algorithm
�GA�. Without imposing much “prior” knowledge about the
target, we show that a retrieval of the atomic target potential
V�r� is possible.

The rest of this paper is arranged as the following. For
completeness, we first explain in Sec. II how GA functions
and how the DCSs are calculated quantum mechanically if a
central potential V�r� is given. In Sec. III, we used a model
potential of Ar to generate the DCS, and then used GA to
retrieve this potential. This method is shown to work for the
model Ar, Ne, Kr, and Xe atoms. In Sec. IV we used DCSs
calculated with R-matrix �RMAT� approach as “experimental
data.” We assume random errors of no more than 10% and
angular resolution of 5° and only the relative cross sections
are known. Using GA we are able to obtain the potentials
V�r� for Ne, Ar, and Kr. For Xe, the potential which gives the
best fit of the cross sections turns out to be incorrect, but the
next better-fit one is correct. In Sec. V we sum up our GA-
fitting experience. A short summary and discussion of ex-
tending this work for dynamic chemical imaging with infra-
red lasers are given in Sec. VI. Atomic units are used in this
paper unless otherwise indicated.

II. GENETIC ALGORITHM AND THE CALCULATION
OF ELASTIC DIFFERENTIAL SCATTERING

CROSS SECTION

A. Statement of the problem

Suppose elastic differential scattering cross sections
�e�k ,�� have been obtained between an incident electron and
a singly charged atomic ion, over a range of electron mo-
mentum and scattering angles experimentally. We wish to
construct a spherically symmetric model potential V�r�
which will reproduce the DCSs as close to �e�k ,�� as pos-

sible. Since the range of k and � will be limited, it will not be
treated as a standard inverse scattering problem. Instead, we
seek the solution by using GA. The potential will be param-
etrized in the form

V�r;a� = −
1 + a1e−a2r + a3re−a4r + a5e−a6r

r
. �1�

Since we are treating neutral atoms, the asymptotic charge in
Eq. �1� has been set to 1.0. We assume that we do not know
the target, but for small r, the target nucleus charge is related
to the coefficients �ai� by Z=1+a1+a5. Note that in this
model, we treat the atom using single-active-electron ap-
proximation. Rare-gas atoms will be used for this test.

The parameter set a= �a1 ,a2 ,a3 ,a4 ,a5 ,a6� forms a six-
dimensional search space. For each known possible solution
a, which is called an individual in GA, we first calculate the
DCS ��k ,� ;a� for the scattering by the potential V�r ;a�. The
fitness of this individual is then calculated from a fitness or
objective function

�2�a� = �
i,j

ki
4���ki,� j;a� − �e�ki,� j��2. �2�

Note that we use weighted DCS k2� in order to give more or
less equal weight to the DCS at different energies. Obviously
individuals with lower fitness values are considered better
designs, and we aim to find a parameter set a= �ai� with
possibly lowest fitness using GA.

We comment that the model potential approach for the
DCS calculation used here neglects the electron exchange,
core polarization, and other many-electron correlation ef-
fects. This approximation is adequate for electron scattering
for energies above 10 eV and more. The DCS calculated
from model potential method are in good agreement with
those from the R-matrix calculations, see Sec. II C.

B. Genetic algorithm

In this work we used the GA driver GA v1.7a, imple-
mented by Carroll �19� and written in FORTRAN language. In
this code, binary encoding of the parameter set �ai� is
adopted. Both simple genetic algorithm �SGA� and micro-
genetic algorithm �micro-GA� can be used. We use
micro-GA in this work. Similar to SGA �20�, two operators
are employed in micro-GA: �parent� selection and crossover.
Both GAs start with an initial population, i.e., a group of
candidate parameter sets, which are randomly selected from
the search space. Next, the fitness of each individual is evalu-
ated, which identifies their survival ability.

In the following evolutionary process, to create offspring
for the next generation which will totally replace the current
population, parents are selected according to their fitness. In
other words, the fitter individuals will be emphasized more
in hope that in turn they will have offspring with even lower
fitness. The selection scheme applied in the work is tourna-
ment selection with tourney size 2. In this scheme, two can-
didate individuals will be randomly chosen with shuffling
technique. The fitter will then win out to be one mate; the
other mate will be fixed by running another tournament.
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Afterward, marriage of all pairs of mates will generate the
new generation, whose genetic construction descends from
their parents’ by crossover. It is worthy of pointing out again
that crossover is performed on the basis of binary encodings
instead of real-valued encodings. In more detail, each indi-
vidual, an ordered list of the six real-valued parameters in
each set, will be encoded into a binary sequence with each
bit representing a “gene”. In this study, uniform crossover is
adopted in which gene exchange happens at each bit locus
with probability pcross. Elitism is also applied which simply
retains the current best-fit individual in the next generation,
in case that it may be destroyed by crossover. GA practice
tells us elitism could efficiently cover against the negative-
ness of crossover and significantly improve the GA’s perfor-
mance. Different from SGA, micro-GA does not perform
mutation operation on the offspring.

Once the next generation is created, a new round of evo-
lution procedure starts over again. This loops until the maxi-
mum number of generations, Gmax, set previously is reached
and ends with output of the best parameter set found by then.

Besides the difference in mutation from SGA, micro-GA
evolves only a small population �typically population size
Npop is 4–10�, which will largely cut down the number of
fitness-function evaluations and the computer time. Never-
theless, genetic diversity is not able to be maintained for
many generations if “the population evolves in normal GA
fashion” �19�. To prevent premature convergence, similarity
of the whole population is checked for every generation. The
genes of the best individual in each generation will be com-
pared with those of the rest of the population locus by locus.
If the variability, defined as the weight of the nonidentical
bits out of the total bits, is less 5%, the micro-GA will restart
with the best individual and randomize the others.

C. Calculation of differential elastic-scattering cross sections

Since the fitness function is based on the elastic DCS, we
describe briefly how the DCS is calculated for each candi-
date potential V�r ;a�. First, we separate out the long-range
Coulomb potential, such that

V�r� = −
1

r
+ VS�r� , �3�

in which VS�r� is the short-range potential. In standard
quantum-mechanics textbooks, V�r� is called a modified
Coulomb potential. The total differential scattering amplitude
for such a potential can be written as

f��� = fc��� + fS��� , �4�

where fc��� is the Coulomb scattering amplitude,

fc��� = −
�

2k sin2�

2

e−i�� ln�sin2��/2��−2�0�, �5�

with �=−1 /k and �0=arg���1+ i���. The scattering ampli-
tude fS from the short-range potential VS�r� is given by

fS��� = �
l=0

�
2l + 1

k
e2i�lei�l sin �lPl�cos �� , �6�

where the Coulomb phase shift for each partial wave is

�l = arg���l + 1 + i��� �7�

and �l is the phase shift from the short-range potential.
For the present purpose, we do not have experimental

DCS, �e�k ,��. Thus we generate the experimental data in
two ways. One is to start with a given model potential for a
given atom to generate the DCS. We then use the GA, and
see if we can recover this potential. Alternatively, we can use
the R-matrix method �21� to calculate the DCS. In the
R-matrix method, the target states are expressed as
configuration-interaction expansion of Hartree-Fock orbitals.
The resulting close-coupling equations for the continuum
electron are solved with the R-matrix method. Note that in
RMAT calculation, all the electrons in the atom are consid-
ered, i.e., not in the single-active-electron approximation.

D. GA parameters and restrictions on the potential
parameters

This is an indirect fitting procedure. We want to construct
the potential V�r ;a� by best fitting the elastic DCS. In sum,
there are four GA parameters: population size Npop, cross-
over rate pcross, maximum number of generations Gmax, and
initial random number seed iseed which is negative to warm
up the random number generator. The computer time mainly
depends on the total number of fitness evaluations which is
proportional to Npop and Gmax. Generally speaking, smaller
population size will make the GA run faster and yet evolu-
tion flow converges slower. On the other hand, larger Gmax
surely lowers the risk of getting a nonconverged best fit but
will linearly increase the computer time. Thus we balance
computer time and GA convergence, but give the priority to
the latter. For micro-GA, pcross=0.5 is appropriate for uni-
form crossover and we prefer Npop=5–6. We set Gmax as a
number as large as possible within the limit of computer time
that we are willing to accept. Using micro-GA, the computer
time is shorter, but at the expense of slower evolution con-
vergence. Another way to reduce computer time is to put
some restrictions on the potential parameters. For example,
the nuclear charge Z should be between 1 and 118, and the
effective charge Zef f�r ;a�=−rV�r ;a�	0 should be a de-
creasing function of radius r, i.e., Zef f� �r ;a�
0. For the pa-
rameter sets a which do not satisfy these conditions, there is
no need to further calculate the DCS. We simply set a very
large fitness value for them. Note that the inverse problem
does not guarantee a unique solution in general. This is also
true for GA. These additional constraints are useful for help-
ing to sort out the acceptable solutions.

III. GA FITTING WITH ELASTIC DCS GENERATED
FROM A GIVEN MODEL POTENTIAL

In this first test, we feed the DCS generated from a known
potential V�r�. The range of k is taken to be �0.3,2.0� with 21
equal-spaced grid points. The scattering angle � runs from
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120° to 180° with an increment of 1°. The GA parameters
are set up with Npop=6 and Gmax=6400. We chose Ar for this
test, using the model potential from �22�. In Fig. 1�a� the
“experimental” DCS surface is shown �note that the DCS is
weighted by k2�. In the test, we set iseed to a series of num-
bers from −50 to −1500 in steps of 50, which results in
assorted curves in Fig. 1�b�, ending with different fitness
values at generation Gmax=6400. Note that only six curves
with the lowest fitness are shown in Fig. 1�b� for clarity.
However, it is difficult to draw a simple rule about the final
behavior of fitness curves with different iseed, as two vicinal
seeds could have the fitness scattered far away from each
other at the end, and vice versa. It is therefore fair to say that
GA outcomes are “randomly” distributed. In this study, 30
seeds, i.e., 30 independent runs, are deemed capable of pro-
viding a reasonably good fit.

The fitted potential from this test run is shown in Fig.
1�c�, which is compared to the input potential. Good agree-
ment between the two can be seen. The ratio of the error is
less than 4% over all range of r except near the origin where
the error is 10%. Nevertheless, from GA, we obtained 1
+a1+a5=16.1, which is close to Z=18 for Ar.

In Fig. 1 the experimental data were selected for the re-
gion of k= �0.3,2.0�. Since low-energy electrons do not pen-
etrate near the nucleus, this may explain why the retrieved
potential there is not as accurate as we like it to be. We next
used experimental data for k= �2.0,3.0�. The DCS surface in

this range is shown in Fig. 2�a�. The potential obtained from
GA is compared to the input potential in Fig. 2�b�. We can
see clear improvement in the agreement in the small-r re-
gion. The nuclear charge calculated from 1+a1+a5=17.35 is
now close to Z=18 used in the input.

We have tested GA for other rare-gas atoms such as Ne,
Kr, and Xe, and similar results have been obtained. As an
example, the experimental DCSs for Xe are shown in Fig.
3�a� and the retrieved potential is shown in Fig. 3�b�, which
is in good agreement with the input potential.

IV. GA FITTING WITH ELASTIC DCS GENERATED
FROM R-MATRIX CALCULATION

In this section, we will use the elastic DCS calculated
with RMAT method as experimental data. Differently from
Sec. III, in RMAT calculations no input potential is available
and all the electrons are considered in the DCS calculation.
To make the simulation more “realistic”, we assume that
experimentally only the relative DCSs are provided. Thus we
arbitrarily multiply the calculated DCS by a factor of 10. We
further introduce “experimental” errors of no more than 10%
using a random number generator and “instrumental” angular
resolution ��=5° on the data. The angular range is taken
between 100° and 180° and k is chosen in the range of
�0.4,2.0� at 21 equally spaced points.

Because the theory calculates absolute DCS, while the
experiment gives only the relative values, the fitness function
now is modified to

�2�a� = �
i,j

ki
4�f��ki,� j;a� − �e�ki,� j��2. �8�

0
2
4
6
8

10
12
14
16
18
20

0 0.5 1 1.5 2 2.5 3

E
ffe

ct
iv

e
ch

ar
ge

Z
ef

f(r
)

r (a.u.)

(c)

(b)

(a)

Fitted
Original

2.4

2.6

2.8

3

3.2

3.4

0 1000 2000 3000 4000 5000 6000 7000

F
itn

es
s

lo
g 1

0χ
2

Generation

(c)

(b)

(a)

iseed=-350
iseed=-450
iseed=-750

iseed=-1100
iseed=-1450
iseed=-1500

(c)

(b)

(a)

angle θ (deg)

momentum k (a.u.)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

180
160

140
120

0

10

20

30

40

k2×DCS (a.u.)

FIG. 1. �Color online� �a� Weighted elastic DCSs of Ar fed into
the micro-GA, for momenta k� �0.3,2.0� and angles �
� �120° ,180°�. �b� Evolution of the best fitness per generation as-
sociated with different random number generator seeds iseed. �c�
Comparison of the fitted and the original effective charges Zef f�r�.
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FIG. 2. �Color online� �a� Weighted DCSs of Ar for k
� �2.0,3.0� and �� �120° ,180°�. �b� Comparison of the fitted and
the original effective charges Zef f�r�.
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The factor f is determined by

f =

�
i,j

ki
4��ki,� j;a��e�ki,� j�

�
i,j

ki
4���ki,� j;a��2

, �9�

which corresponds to the minimum of �2�a� in Eq. �8�.
In Fig. 4 the DCS surfaces for Kr, Ar, and Ne obtained

from the RMAT calculations are shown. They actually are
quite close to those generated from model potentials used in
Sec. III �but we assume that is not known�. With GA setup of
Npop=5 and Gmax=6400, the fitting process went through
very smoothly, and the fitted model potentials are given in
Fig. 5. In this figure, we also show the model potentials
obtained from �22�. Note that for the latter, the model poten-
tial is fitted with the energy of the ground state as well as a
few excited states. From GA, the extracted nuclear charges
are 9.5, 16.7, and 35.2, for Ne, Ar, and Kr, respectively. As
noted earlier, more accurate nuclear charges can be obtained
if DCSs at higher energies are used.

Without the V�r� to check the accuracy, one can compare
the energy levels calculated from the retrieved V�r� with ex-
perimental data. This is shown in Table I. We note that the
agreement is acceptable. For the excited states, the error is
typically better than 5%, with larger error for the ground
state. The larger error for the ground state is not surprising.
To begin with, we already know that the potential near the
nucleus is not as well retrieved using the set of experimental
DCS data in this simulation. Furthermore, the fitness func-
tion is for the DCS only.

Despite the success shown above, one should not come
away with the impression that GA always works so well.
Using the DCS calculated from RMAT approach for Xe, as
shown in Fig. 6�a�, we retrieved the effective charge Zef f�r�,
showing results from the two with the best fitness. It is clear
that the one with the best fitness is incorrect since it would
give a nuclear charge close to 90. The second best fit actually
results in model potential that is closer to the correct answer.
See additional comments below.

V. GA-FITTING EXPERIENCE

Inverse scattering problem is a very large subject. In prin-
ciple, many multiparameter optimization techniques could be
applicable and GA is only one of them. As we have found
above, the search space for our problem is large, and the
landscape is not known well enough and complicated, con-
taining many valleys �see, e.g., Fig. 1�b��. The fitness func-
tion is not perfectly smooth due to restrictions on the fitting
parameters. Research has shown that GA is a good method to
try for such problems �20�.

The results shown above also confirm positive perfor-
mance of GA for the present problem. For better understand-
ing of micro-GA and also for completeness, the experience
of these preliminary tests is briefly summarized here.

Convergence. To guarantee the convergence of the opti-
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mal parameter set in each evolution process, we suggested
setting Gmax as large as possible. However, the example of
Xe in Fig. 6 tells us that one should check whether the best
fits from different iseed converge to each other or not. In the
present work, this is performed by comparing their corre-
sponding Zef f�r�. In all the tests above, the convergence was
confirmed.

Fitness function. As stated in Sec. II, a weight is needed to
treat all the data sets more or less on equal footing in the
fitness function. Since the DCS decreases with increasing
kinetic energy of the electron, a weight of k2 was multiplied
to each DCS. Tests without a weight were also done but
failed to come up with good fits.

Fine search. Local search may be mated with micro-GA
to get a better design �23�. For a test, the multidimensional
Nelder-Mead simplex search �24� was adopted which opti-
mizes the best fit per generation by using it as the starting
point. This turns out to be able to improve the final fit; e.g.,
Z of Ar in Fig. 1 could be improved to 17.5. However, the
overall improvement is quite insignificant in view of the
large increase in computer time. Thus local search was not
adopted.

VI. SUMMARY AND OUTLOOK

In this paper the collision between an atomic ion with
electrons is treated as the scattering of electrons from a
model potential. By expressing the atomic potential in the
form of Eq. �1� with six parameters, and assuming that elas-
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of the two best fits are shown. Note that the best fit actually is
incorrect. The second best fit agrees with the known model potential
�22� well.
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FIG. 5. �Color online� Fitted effective charges Zef f�r� �solid line�
by using the data shown in Fig. 4 for Ne, Ar, and Kr. For compari-
son, effective charges �dashed line� from the model potentials in
�22� are also plotted.

TABLE I. Comparison of the energy levels �in a.u.� from ex-
periments and from the fitted potentials for Ne, Ar, and Kr. Error
ratios are also shown as percentages.

Configuration Expt.a GA

Ne 2s22p6 −0.792482 −0.832242 �5.02%�
2s22p53s −0.178868 −0.170281 �4.80%�
2s22p53p −0.108140 −0.106876 �1.17%�
2s22p54s −0.068261 −0.067332 �1.36%�
2s22p54p −0.048987 −0.049522 �1.09%�
2s22p55s −0.035578 −0.035754 �0.49%�

Ar 3s23p6 −0.579155 −0.467188 �19.33%�
3s23p54s −0.150964 −0.150609 �0.23%�
3s23p54p −0.095147 −0.098672 �3.70%�
3s23p55s −0.061856 −0.060740 �1.80%�
3s23p55p −0.043744 −0.045780 �4.65%�
3s23p56s −0.033707 −0.032724 �2.92%�

Kr 4s24p6 −0.514476 −0.464244 �9.76%�
4s24p55s −0.140347 −0.143238 �2.06%�
4s24p55p −0.093071 −0.092664 �0.44%�
4s24p56s −0.060086 −0.058833 �2.08%�
4s24p56p −0.044650 −0.044134 �1.16%�
4s24p57s −0.032900 −0.031910 �3.01%�

aThose are nonrelativistic levels roughly calculated by using term
average.
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tic differential scattering cross sections are available “experi-
mentally” over a range of energies and angles, we set to find
the six parameters using the genetic algorithm. The input
‘‘experimental’’ data were obtained theoretically from an-
other input potential, or from R-matrix calculations, assum-
ing that only the relative cross sections are available and that
there are in general a 10% intrinsic random errors and 5°
angular resolution in the data. We found that the atomic po-
tential retrieved using GA is quite accurate, as also evi-
denced by the fact that the retrieved potential reproduces
experimental binding energies accurately. We emphasize that
DCSs from backscattered electrons are used and electron en-
ergies of a few to a few tens of electron volts, as these are the
typical returning electron energies when infrared lasers are
used in laser-atom and laser-molecule interactions, in con-
trast to the standard electron-diffraction method where the
electrons are in the hundreds of keV and the scattering angles
are in the forward directions.

As indicated in Sec. I, our main goal is to retrieve struc-
ture of a transient molecule using high-energy above-
threshold-ionization �HATI� electrons generated by few-
cycle laser pulses where the laser duration is of a few
femtoseconds �25�. According to the quantitative rescattering

theory we have recently developed, it is possible to extract
accurate DCS from the momentum distributions of the HATI
electrons. Using a pump laser to initiate a transition, the
HATI electron momentum spectra can be measured with an-
other few-cycle probe laser pulse. As shown by Chen et al.
�11�, for this purpose the phase stabilization of the laser pulse
is not needed. Our next goal is to generate DCS from fixed-
in-space molecules or molecules that are partially aligned or
oriented and test the GA method to extract the structure of
the molecule. Experimental HATI electron momentum spec-
tra from isotropically �26� or partially aligned molecules �27�
are beginning to emerge in many laboratories. The success of
the method presented in this paper convinces us that GA may
be used to retrieve the structure, i.e., the bond lengths and
bond angles of a transient molecule, with temporal resolution
of a few femtoseconds.
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