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Total cross-section calculations on proton-impact ionization of hydrogen
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We have calculated the total cross section for proton-impact ionization of atomic hydrogen for the interme-
diate energy range 25-100 keV. We evaluate error bars of 5% on our theoretical values. The present results
disagree with the experiment of Shah and GilbgdlyPhys. B14, 2361(1981)] and Shatet al.[J. Phys. B20,
2481(1987], differing by 20% at the peak of the ionization cross section. On the other hand, our results show
better agreement with two recent theoretical calculations, one performed by close coupling and the other by
integrating the time-dependent Schimger equation on a three-dimensional lattice. The present results also
compare favorably with theoretical and experimental determinations of capture and excitation cross sections.
We describe the two-center momentum space discretization method, used here, in detail, explaining how the
cross sections and corresponding error bars are determined.
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[. INTRODUCTION formed a very detailed study of the two-center close-
coupling method and determined that previous close-
lon impact ionization has been an interesting problem forcoupling studies were not converged. His studies provided
many years, but most recently, there has been a flurry ofross sections that were now 20% higher than the experiment
work on the subject of proton impact ionization of moleculesof Shahet al. Lattice calculations by Kolakowsket al. [9]
with the aim of understanding radiation damage in biologicalcame in also significantly higher than the experiment at the
systemd 1,2]. Unfortunately, our understanding of even the maximum of the ionization cross section. Thus, the present
most basic ion impact collision system, protons on hydrogensituation is the opposite of what it was in 1978; the theory
is not very good. At the peak of the ionization cross sectionnow predicts 20% higher-ionization cross sections than the
numbers available from the “best” experimef3,4] and experiment measures.
“best” theory [5] disagree by 20%. Experimentally, the proton-hydrogen collision system is
The proton-hydrogen system is a prototype for ion-atondifficult to investigate because of problems in making and
collision systems. The theoretical understanding of ion-aton¢haracterizing the atomic hydrogen target. The first studies
collisions is based on methods and models tried out on thiby Fiteet al.[10] measured the ionization cross section up to
fundamental collision system. Yet, a complete description ofin impact energy of 40 keV, but the error bars were at the
proton-hydrogen collisions at keV energies has proved elu20—30 % level. Other early measurements made by Gilbody
sive. The basic reaction channels are elastic scattering, targand Ireland 11] and Parket al.[12] in the intermediate im-
excitation, capture to the projectile and ionization. lonizationpact energy regime also had a large experimental error. The
is the least understood process of the four. In the intermedigenerally accepted numbers for the total ionization cross sec-
ate energy regime 25-100 keV, where the projectile protoition in p-H collisions were generated from experiments done
comes in at a speed comparable to the average speed of thg Shah and Gilbody and Shahal.in 1981 and 19873,4],
electron, all four processes are important and interconnecte@hich claim experimental error on the level of 5% or better.
A poor understanding of one — ionization — limits the accu-Recent studies by Kerbgt al. [13], focusing on the doubly
racy of the description of all other processes. Thus, it igifferential cross section for ejecting electrons in fhéd
paramount to develop a theoretical description of electrosystem, produced total ionization cross sections, which differ
ejection in the proton-hydrogen system that can give the totdrom Refs.[3,4] by up to 29%.
ionization cross section to arbitrary accuracy. On the theoretical side, there is much more work done on
The firstab initio attempt at computing the total ioniza- the proton-hydrogen collision system, see Rgfg,15 and
tion cross section at intermediate impact energies was pereferences therein. The reason for this is obvious; e
formed by Shakeshaf6]. He employed a two-center expan- system contains only one electron and a simple Coulomb
sion in atomic orbitals about both centers, using pseudostatésteraction with the two protons, the motion of which may be
(positive energy, localized stajet® represent the ionization described classically to a good approximation. Thus ptté
continuum. At the time, Shakeshaft's calculation came in asystem reduces to the quantum-mechanical study of a single
20% below the maximum for ionization total cross sectionelectron in the time-dependent field of two moving protons.
from available experimental data. Later, measurements b#s a result, most elastic and inelastic processes involving
Shah and Gilbody and Shat al.[3,4] were in better agree- bound states on the target or projectile protons are well de-
ment with the calculation of Ref6]. Further elaboration of scribed by current theory.
the two-center atomic orbitals method by Kuang and Lin lonization, however, remains a challenge even forgé
[7,8] showed very good agreement between theory and thsystem. Within the last five years, a variety of approaches for
experiment of Shalet al. in the intermediate impact energy obtaining the ionization total cross section in proton-
range. The issue seemed to be settled until Toshifhaer-  hydrogen collision have appeared in the literatimereverse
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TABLE |. lonization and other inelastic cross sections in units 2
of 1076 cn?. All numbers have 5% error.

Excitation Excitation Capture Capture

._.
in
T

E (keV) lonization 2s 2p 2s 2p 2 i

25 0.961 0.1423 0.5103 0.3994 0.1956 ’79 I i |
40 1.649 0.1566 0.6266 0.2262 0.0815 é 1+ -
50 1.801 0.1464 0.6587 0.1384 0.0447 % 3 @ +

75 1.700 0.1151 0.7078 0.0412 0.0109 g i |
100 1.457 0.0931 0.7124 0.0144  0.0033

o
n
T
|

chronological order Finite Hilbert basis set calculations by
Fu et al. [16], classical trajectory Monte Carlo calculations 0= 12 14 16 18 2
with initial ensemble geared for ionizatigt7], direct solu-
tion of the time-dependent Sclilinger equation on a very
large three-dimensional latti§®], an extensive study of the FIG. 1. Comparison of total ionization cross sections with other
two-center C|ose_coup|ing approach by Tosh|Eﬁh pertur- theory and experiment. solid circles with solid line and error bars,
bation theory using a time-dependent two-state model as gresent results; asterisks, Toshiiigd, diamonds, fin_ite differen_ce
zeroth order trial wave functiofil8], and a three-center method by Kolakowskat al. [9]; open boxes, Fourller collocation
close-coupling calculation by McLaughlit al.[15]. In this method by Kolak.owsket al.[9];_up triangles, experiment by Shah
paper, we will discuss at length the close-coupling method! @[3} down triangles, experiment by Shehal. [4]; X, experi-

and the lattice calculation in comparison with the presen{nent by Kerbyet.al'[l?’]; da.Shed line is the recommended values
calculation. rom the International Atomic Energy AgencyAEA). The IAEA

To address the issue of ionization in proton-hydrogen COI_rates their data in accuracy class B, 10—25% error. The dashed error
- bar shows the maximum of that error range, 25%.
lisions, we have developed the two-center momentum space
discretization(TCMSD) method[19,20. The original pur-

pose of the TCMSD method was to examine the full three- A. lonization

dimensional distribution of ejected electrons, and we have |, Fig. 1, we present our total cross section for proton
applied the method to understand the saddle-point mechgypact jonization of hydrogen. Other recent calculations
nism in low-velocity proton-hydrogen collision®21] and  shown by Toshim45] and Kolakowskeet al. [9] represent
a-H collisions[22]. For the low-impact velocities, the TC- q state of the art in the close-coupling and lattice methods
MSD method cannot propagate the electronic wave functiongsnectively. The experimental results shown come from
far enough to establish a final probability of ionization. On Kerby et al.[13] and Shah and Gilbody and Shetal.[3,4]

the other hand, for impact velocities 1 a.u. and above, th Iso shown is the interpolated, recommended values from

TCMSD method may reach large enough times to give . ) .
total ionization cross section. Moreover, TCMSD allows uﬁhe International Atomic Energy Agen@AEA) [23], Wh'Ch
re clearly based on the results of Shettal. We estimate

to put error bars on our computed numbers. In this paper, wé e . ,
first show the TCMSD results for inelastic processes inuncertainties in our calculation and claim an accuracy of 5%
proton-hydrogen collisions, then we give a detailed accoun®™" putting our cross sections at odds with the values re-

of the theory with the parameters used in the current calcuPOrted by Shalet al. o _

v (a.u.)

lation relative to other theoretical work. data of Shah and Gilbod}g] at the low end of our energy
range, but we obtain a value 30% higher at the maximum of
Il INELASTIC CROSS SECTIONS the ionization cross section. The agreement with the experi-

ment of Kerbyet al. is slightly better, but there again we

The main goal of this paper is to provide a reliable calcu-have a large discrepancy near the maximum of the cross
lation for the ionization cross section for the proton-section. The curve from the IAEA is classified as accuracy
hydrogen system in the intermediate impact energy rangeategory B, 10-25 % error, significantly larger error than
25-100 keV or 1-2 a.u, in impact velocity. We show ourreported by Shalet al. The error bars of the present calcu-
results for ionization and support them later by a detailedation does overlap with the 25% error bars drawn in Fig. 1.
description of the theory. But as stated in the IntroductionOne of the main difficulties in producing the experimental
ionization is intertwined with other inelastic processes thatross sections is to determine the ratio of atomic hydrogen to
are also important in this energy range. It is not possible tanolecular hydrogen in the gas target. In the case of Refs.
accurately describe one without treating all. To support ouf3,4] the data is normalized to the Born approximation at
ionization results, we also show cross sections for excitatioimpact velocity ofv =7.75 a.u. The validity of the Born ap-
to the Z and 2 states of the target and capture toghd 20 proximation, even at that high an impact velocity, is an open
states of the projectile. Numerical results for reported crossjuestion5,24]. Normalization issues aside, the shape of our
sections are shown in Table I. calculation does not fit with that of Shagt al.
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FIG. 2. Comparison of weighted probabilitidsP(b) for ion- FIG. 3. Weighted probabilities of ionizatiob,P(b), for all en-

ization between present calculation, solid circles with solid line, andergy points calculated for this article: line with squares 25 keV (

Toshima[5], up triangle with dashed line, for an impact energy of =1), line with diamonds 40 keViy(=1.265), line with circles 50

50 keV (v=1.414 a.u.) keV (v=1.414), line with up triangles 75 ke\WE 1.732), and line
with down triangles 100 keVy(=2).

The ionization cross section of the present calculatiorhetween impact velocities 1.3 and 1.4 a.u.; such structure is
compares better with other recent theoretical calculationgificult to understand for these intermediate impact energies.
than with the reported experimental data. Our calculationrpe close-coupling calculations also are higher than the
agrees with both reportEd pOintS from the Fourier COllocatiorbresent calculations in the middle of our energy range, but
calculation of Kolakowskat al.[9], but their numbers from ot as high as the experiment by Detleffsral. The lattice
the finite difference method are about 30% higher at impactesults come in slightly above the close-coupling results at
velocity v=1 a.u. Ref[9] does not, however, express a lot jntermediate velocities but they agree with each other at low
of confidence in their ionization cross section due to th%nergy_ We remark that the impact-parameter range covered
indirect Way in which it is determined, C|t|ng the difference in the present calculation goeshﬁ:lo a.u., which is suffi-
between their own Fourier collocation and finite differencecient for ionization but falls a little short for excitation to the
calculations. The present ionization cross section agrees begg)_ We extrapolated the impact-parameter dependence of the
with the close-coupling calculation of Toshirfal. The only  excitation probability, and the extrapolated piece contributes

significant disagreement is at impact velocity 1 a.u., whergys much as 6% , at=2, to our reported cross sectiotihe
Toshima’s value is 11% higher than our cross section for

impact ionization. At 50 keV{=1.414), the present calcu- i ' !

! T ! T
lation agrees with Toshima’s number to within 1%. Even at - o i g ﬁ*é b
the level of impact-parameter dependence, see Fig. 2, ou i
computed probability of ionization fits well with Toshima’s. I ° 2p

We also show the impact-parameter dependence of the ior's

ization probability for the other energies we calculated in*%, | %

Fig. 3. We come back to a more detailed discussion of the
comparison between our results and the other theories afte
presenting our theoretical framework.

Y|

cm

Cross Section (10
(%

B. excitation and capture L

Considering the scatter in the various results for the ion- :é %
ization cross section, we offer additional support for our cal-

culation by showing its results for excitation and charge
transfer. In Fig. 4, we compare our cross section for excita- v@au)

tion to 2p with experimental results of Detleffsest al. [25] FIG. 4. Comparison of excitation cross section with experiment.
and Barnetf26] in addition to the theoretical calculations of 125 excitation: solid squares with lines and error bars, present
Toshima[5] and Schultzet al. [27]. Our calculation is con-  calculation; crosses, Toshin{&]; down triangles, Schultzt al.
sistent with the experiment for impact velocities in the rang€27]; open circles, Higginet al. [28]. H2p excitation: solid circles

of v=1-1.3 a.u. and then once againvat 2. The present with lines and error bars, present calculation; asterisks, TosHina
calculation shows smooth behavior between those limitSgiamonds, Schultet al. [27]; open squares, Detleffsest al. [25];
while the experiment of Refl25] shows a rapid increase up triangles, Barnefi26].
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] sections for the inelastic process that are weaker than ioniza-
_ tion gives us additional confidence in our reported ionization
i Cross sections.

e
=

IIl. THE THEORETICAL FRAMEWORK

We review here the two-center momentum space discreti-
zation (TCMSD) method, because its implementation has
evolved since the original articl¢49,20. Also, the empha-
sis of this article is to provide accurate numbers, so a detailed
description of TCMSD with a critical assessment of its
strengths and weaknesses is in order.

The proton on a hydrogen collision system is viewed in
! ; ! i I the standard semiclassical framework, where the internuclear
. - = motion is classical and the electron is treated fully quantum
mechanically. Moreover, we assume rectilinear motion for

FIG. 5. Comparison of capture cross section with recommendedhe projectile center with constant velocityand impact pa-

numbers from the International Atomic Energy AgendEA).  rameterb. The time-dependent Schitimger equation, written

H2s: solid squares with lines and error bars, present calculationjn the target frame, for an electron in the field of the two
asterisks, Toshim45]; down triangles, Kolakowskaet al. [29]; protons is

dashed line, IAEA.H2p: solid circles with lines and error bars,
present calculation; crosses, Toshifid; diamonds, Kolakowska

Cross Section (10‘16 cmz)

=3
=3
=

v (a.u.)

et al.[29]; dashed line, IAEA. Outer error bars on the IAEA curve  j— yy(r t)=| — EVZ_ i_; P(r,t), R=vt+b.
represent the IAEA's maximum error bar, and the interior error bar It 2 [r] |[r—R]
represents IAEAs minimum error bar. (1)

extrapolated contribution is less than 0.5% wat 1.414, The coordinate system is the natural frame, where the pro-

where we have the largest discrepancy between theory ar@ctile velocityv is along thex axis, the impact parameter is

experimeny. In Fig. 4, we also show excitation to thes2 @along they axis, and thez axis is perpendicular to the colli-

compared with experiment by Higgirs al.[28] and theory sion plane. Atomic units are used throughout. The details on

by Toshima[5] and Schultzet al. [27]. The lattice results the two-center momentum space discretizati@iCMSD)

match well with the close-coupling calculation for interme- Mmethod, employed to solve Eql), are presented in Ref.

diate energy. Our calculation agrees with the experiment t619]- Here, we restate the form of the electronic momentum

within experimental and theoretical error bars, while thespace wave function, give a brief account of how the time-

close-coupling calculation falls outside the experimental erdependent wave function is found, and discuss the calcula-

ror bars at intermediate impact velocities. tional parameters used to solve Et). We describe at length
Turning to the Capture Cross Section, we show in F|g g]OW .bound'state and ionization. amplitudes are derived from

our results for capture to2and 2p compared with recom- the time-dependent wave function.

mended values from the IAEA, calculations by ToshifBa

and Kolakowskeet al [29]. The IAEA classifies its & cap- A. Wave-function propagation

ture as accuracy category C/E angl 2apture as accuracy The electron wave function in the ion-atom collision is

category C: C means 25 to 50% error and E is more than C

100% error. In the figure, 50% error bars are put on thaePresented by a two-center expansion in momentum space

IAEA data at the endpoints, and a 25% error bar is shown on R 5 R o

one interior point. The capture to thep2agrees with the D(p,t)=2 T m(P,1)Y m(p)+e 7 (PR-12%

present calculation to within prescribed accuracy. The agree- lm

ment between the two sets of numbers is even better for - L L

capture to the & Our calculation is even within the 25% X2 Pro(@,)Y) m(@), g=p—v, 2

error bar of their prescribed numbers. Moreover, we have hm

agreement over the whole impact velocity range where both

capture cross sections drop more than an order of magnitud¢here the spherical harmoni§ , is defined with respect to

The close-coupling results match with ous 2apture cross €ach center in the momentum space expansion. We use the

section but not for P capture, which lies outside our error real form of the spherical harmonics with the convention that

bars. The lattice calculations fosZapture track the present POsitive values omrefer to cosng and negative values of

and close-coupling results, but the lattice results forcap- ~ refer to siime. The phase factor in front of the second sum

ture are again below the present calculation and appear @ the right of Eq(2) is the plane-wave electron translation

agree with the close-coupling results. In any case, all threéactor in the momentum space. We have carried out a partial

theoretical calculations fit with the IAEA recommended dataVave expansion on each center and the radial functions

The fact that the TCMSD calculation gives reasonable cros$| n(p,t) andP; (q,t) are in turn expanded iB splines:
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N wherep,,in is nonzero. As if19], fourth-order basis splines
Tim(p=2> c™)Bi(p)+c"(V)f(Pmin.P) are employed. The knot sequence is repeatef,at and
=1 Pmay iN order to have the first and laBtspline terminate at
+cK,“(t)g|(pmaX,p). (3 unity. We have attached asymptotic piecesBg(p) and
Bn(P)

The B-spline expansion covers a range fr@mi, t0 Pmax.

(p/pmin)I 0= p< Pmin

fi(Pmin,P) = 0 op “
0 p<pmax

gl(pmax:p): ([(|+1)pma)(]2+1)2+| p| . | (5)
Pmax [+ DpP2r 027" P~ Pmax

Roughly speakingf, takes care of the low-momentum be- xyx represents the time derivative of the coefficients, and the
havior coming from the inner turning point of each partial vector b; represents—iH ¢ evaluated at the fitting points.
wave, in configuration space. The functiongy  The x? of the fit reveals the error of the time derivative of
~(Pmax/P)**' represents the well-known large momentumthe electron probability density. Onag is found, this infor-
components of the Coulomb wave functif80]. The par-  mation is fed into the Runge-Kutta integration, which is
ticular form of g; in Eq. (5) is selected to get the lowest  checked for accuracy by the wave-function normalization
bound state exactly correct for eatlils, 2p, 3d, etc),  and by reducing the integration step size.
since they are the major players in collisions with ground-  Since the wave-function normalization is not automati-
state atoms. In any case, the error introduced by this approxgally preserved in TCMSD, the deviation of the norm from
mation was checked by propagating the @bital in time  ynity may be used to put error bars on the physical quantities
over the duration of a collision with no projectile ion inter- gerived from TCMSD propagation. The same cannot be done
action. The resulting probability deviated from unity by in close-coupling methods, since the wave-function normal-
0.02%, much less than other numerical errors. The projectilgzation only reflects accurate time integration and matrix el-
radial functions have an expansion dnsimilar to EQ.(3)  ement evaluation, but unit norm does not ensure accurate
with the spline coefficients labeled]™. representation of the wave function itself. In lattice methods,
Substituting Eq(2) into Eq. (1) gives a set of first-order the norm is not preserved at all, as components of the wave
coupled equations for the expansion coefficients in 8.  function near the boundary of the integration box are masked
The coefficientsc!m(t) and d!m(t) are arrived at through a away[9,27,29. Close-coupling and lattice calculations must
fourth-order fixed step-size Runge-Kutta integration. Therely on indirect ways to evaluate convergence, such as ex-
time derivative of theB-spline coefficients at each integra- amining changes in the cross section with respect to varying
tion step result from a least-squares fitho) at a set of calculation parameters. Thus, to our knowledge, TCMSD is
points that typically outnumber the basis functions by a facthe only method of solving the time-dependent Sdimger
tor of four. The fit is performed in configuration space afterequation that can directly put error bars on cross sections
inverse Fourier transformation of the basis functions,derived from the propagated wave function.
Bi(p)Y,.m(P) and "/ R12°0B(q)y, (@). The fitting
points are arranged as a spherical polar grid about both target

and projectile protons. The linear system solved is shown B. Wave-function analysis
schematically. The numerical wave function, having passed the numeri-
cal checks, is analyzed to extract the bound-state amplitudes.
(AN 3AXK= (AT 3by. (6)  Previously in Refs[19—22, we have neglected overlaps be-

tween the two centers and performed bound-state projection
Products with like indices imply summatioK. andK’ are individually on the target and projectile centers, because we
indices running through all basis functions, ahid an index  were only interested in the gross features of the ejected elec-
running through all the fitting points. The matixis a rect-  tron spectrum. Since we are now interested in obtaining
angular matrix of all basis functions evaluated at all fittingcross sections that are as accurate as possible, it is necessary
points. The least-squares method prescribes multiplyingo project out the bound states on both target and projectile
through byAT, providing a square linear system. The vectorfrom the whole wave function.
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Fa(P) Tim(p,t)p?dp scatter in just a few basis functions. There is also an addi-

tional error on the bound-state probabilities due to stopping

+J F V. (B)e-i(F-R-122) the TCMSD propagation at a finite time, discussed more be-
v n(P)Ym(p)e low. The error inP;,,(b) is the absolute error in the wave-

P function norm, since we obtain it by subtracting the bound-
state probabilities from the total wave-function probability.

" o increasep Thus, the highly excited states are at the mercy of
anlm(t J

0

X|;n/ P m (4:0Y1r m(Q)dPp, @) We estimate the error in the total ionization cross section by
’ computing a relative error at each impact parametdr)
J=p-v. =|1—-N(b)|/Pjon(b). The effect of this error on the total

cross section for ionization is about in the range of 3—3.5 %.
FnYim is the target hydrogen bound state in momentumAn additional error comes from the extrapolation of the
space andv, represents volume in momentum space. Anbound-state probabilities ta=cc, resulting in additional
analogous formula for the projectile bound-state amplitudes]—1.5 % error. Cross sections for bound-state processes will
ah, (1) is simple to write, so we do not show it here. As a have less error from inaccuracy of the propagation, but more
technical note, we remark that the numerical integrals in Eqgerror due to stopping at a finite time. Thus, we put error bars
(7) are actually performed over the radial varialste \/p, of 5% on all our calculated cross sections, including the ex-
which allows the same precision with fewer integrationcitation and capture cross sectionsns 2.
points. The momentum space wave function in &j.con-
tains all bound states of the Coulomb potential, since the
bound stateslecreasén size with increasing principal quan- C. Parameters of the TCMSD calculation
tum numbern. This differs from close-coupling methods,
where each bound state is explicitly entered into the calculase
tion, and conventional lattice methods that are limitechto
=319,27,29 since bound statéacreasein size proportional
to n? in configuration space.

For the present purposes, we are interested in finding th
probability of ionization as opposed to the distribution of
ejected electrons. Thus, we do not attempt to construct th
continuum part of the wave function, but instead we write
the probability for ionization as the total probability minus
the bound states on target and projectile

We discuss the actual parameters used in the calculation.
lection of the proper radial grid on which tBesplines are
defined and a suitable number of harmonics about each pro-
ton is critical for a valid calculation. In addition, an appro-
riate set of fitting points must be chosen, avoiding linear
ependence difficulties within the basis set. For the current
aper, three different basis sets were tested: set A, special-
1zed for low-impact parameter collisions, set B, for large
impact parameter, and set C from our earlier W@®]. After
specifying the parameters of each basis set, we show a com-
parison of all three sets for an impact energy of 25 keV at the
intermediate impact-parametir=2.0.
Pion(D)=N(b) =, (|a](t)]?+]al(ty)]?); (8) Since the two-center nature of the ion-atom collision is
‘ taken into account already by the expansion about each
nucleus, much of the numerical effort goes toward solving
— N - for the radial functions. Thus, in all cases we tdkg,=2.
N(b) fv(b(p’tf) ®(p.t)dp. Since the quantization axis is chosen to be perpendicular to
the collision plane, the odd-parity states are never populated
The indexi runs through all bound-state probabilities. The due to the even parity of the initialstate. Thus, six spherical
guantities, of course, are taken at their final valet; . The  harmonics cover all partial waves up to and includisg2.
target and projectile amplitudes are grouped in the same surm radial momentump,,i, is fixed at 0.01 a.u., bupmax
because in all cases, the same harmonic expansion was usgties in each basis set and in some cases it varies| wiith
on both centers. It is not possible to take the sum over boundeneral, one expects larger momentum to be important for
states up ton=, so instead, we compute E() for bound lower I, since low| partial waves extend to smallerin
states throughn,,,=5 for impact-parameteb<5. (For  configuration space, where the kinetic energy is larger.
larger impact-parameter,, ,,= 3 since amplitudes for higher The specific basis sets are chosen as follows. Set A: The
n are too smal). To extrapolate to highem, we use the 1® B-spline knot points were selected at intervals of 0.05 be-

scaling of the bound-state probabilities tween 0.01 and 4.01 a.u. specifying 83 raddadplines. The
same radial set was used for all partial waves, because we
lan?=lan , J("/Nma® for n>npa,. (9 found that high momentum plays an important role $pp,

andd partial waves in close collisiond&1). Totaling the
The extrapolated values are entered into the sum iN&q. harmonics and corresponding radiakplines, set A is com-
The error of the bound-state probabilities is, to first orderposed of 996 (12 83) elements. Set B: For larger impact
the same as the relative error on the wave-function norm. Iparameter, the radial momentum functions turn out to be
actuality, the relative error increases slowly withsince the  smooth functions aside from a phase factor, exptt/2),
higher the excited state is, the fewer radaplines there are  multiplying the continuum componernsee Fig. 9 in Sec.
to represent itas the radial momentum collapses to zermas 1V C). Thus, we design a knot sequence with relatively large
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spacing for low momentum, but then for high momentum the TABLE Il. Comparison of TCMSD calculations with basis sets
interval spacingdecreasesThe knot points follow the fol- A and B (see text for a 25 keV collision at impact parametbr

lowing formula: =2.0 a.u. Probabilities for bound states and electron ejection are
compared atwt=25.2 a.u. Columns 1 and 2 show probabilities
0.01+0.01 O0<i=<30 from sets A and B, respectively. Column 3 gives the percent differ-
pi= 212+ _30)(pr2nax_2'112)/K 30<i<30+ K’ ence of probabilities arrived at through sets A and B.
(10 set A set B % diff.

We use a wider spacing of 0.07 for the knot points betweemorm 1.0052 1.0069 i,
0.01 and 2.11. For large momentupt>2.11, the formulain  p, 0.08386 0.084 25 4.63%
Eq. (10) gives constant intervals ip? so that the oscillations Targ. Is 0.479 66 0.488 05 1.72%
of the exp{ip/2) phase factor are equally well repre- »g 0.009 91 0.009 65 2.62%
sented. For the-wave K=39 intervals are necessary in the »p; 0.011 94 0.012 37 3.48%
second part in order to reagh,,,=4.0 and at the same time 5, - 0.016 33 0.016 77 2.62%
have the first interval aftep=2.11 be close to 0.07. With Proj. 1s 0.301 34 0.293 39 2 64%
Eq. (10) p3— P3o= 0._069 and thg last inte_rval Beo—Pes  og 0.041 91 0.041 84 0.17%
=0.037. The big savings comes in the partial wapesdd, 2po 0.00078 0.000 83 5.66%
whereK is only 15 reachingp .= 3.0. The number oB 2pm 0.008 77 0.008 69 0.91%

splines in thes, p, andd partial waves are 72, 48, and 48,
respectively. The total number of basis elements is 624, a
reduction of more than a third from set A. Set C: The final
basis set has equally spad@dpline knots as does set A, and

likewise the interval is chosen to be 0.05 a.u. in momentum[ar eris. vet the spherical shell thev cover arows wih In
The difference is thap,,, ., is taken to be 4.01, 2.51, and 2.01 g ' Yet P o y g .
any case, with this set of fitting points basis set A is over

for the s, p, andd partial waves, respectively. The number ofd termined by a ratio of 3 to 1, while sets B and C are
basis elements for this case is 636, comparable in size to Sggerdetermined by close to 5 to 1

B.

Determining the proper set of configuration space fitting
points is also important for having a stable propagation of D. Comparison of basis sets A, B, and C
glseaelse(ﬁgggl ng\;er funn dcgzg'ujgﬁtgtgg (;Oi';:j a:g.scr{i?ggfg We compare the three basis sets for a 25 keV collision at
tons Ig the aziﬁmtha% anglg, we choosegsix angFI)es]at eunz)iI |mpact-param_eteb=2.0 - As stated above, the. main crite-
o . ’ rion, determining how good a TCMSD calculation is, is the
intervals of7/3 radians except whefi=0 due to the degen-

f th is. onlv th | of lected: preservation of the total wave-function norm. Evaluating the
eracy of¢ on thezaxis. Only three values df are selected: norm of sets A, B, and C at the final timg,=25.2, gave

6=0, m/5, and /5. The other values of, 3/5, Aw/5, Iéalues of 1.0052, 1.0069, and 1.0160, respectively. Set A,

to weight the fitting points in the radial direction by, since
the number of angular points remains at 13 no matter how

?hno,l”’ are re&unda?t ble;:ause (?hrefle;:r?on symmettrg/;lrefci learly, is expected to be the best since it has the most basis
at we use the natural frame. Thus, there ar€ a total of 1gioments. set B, however, is significantly better than set C

other collision parameters. We remark that despite the differ-
nces in sets A, B, and C, all three calculations show similar

ship between interval size and stepsize between Fouri
space and configuration space. Take the largest basis, set

2.77/0'05 or§126 a.u.in confllgurat_|on space. Likewise, thelations is shown also to see if these results are consistent
highest-spatial frequency is given by 7max OF  yjith the estimated error of 5%. Indeed, the probabilities for
~1.57 a.u., and one would expect to have at least two pointge pound states and ionization vary in the range of 5% or
per oscillation. By trial and error we settled on the following o5 only the capture to thepa shows a fractional differ-

set of radial fitting points: ence greater than 5%, but this particular capture channel is
very weak. Capture to 2 still only varies by about 1% be-
tween the two calculations. For the cross sections shown in
this article, set A was used fdr<2.0 and set B for 2.8b

ri=0.6+0.5 for 0<i=<100,

ri=4.00—100+0.5 for 100<i<115. (13)

=<10.0.
The radial fitting points start at=0.5, end ar =120.5, and
have a high-resolution grid up to=60.5. The number of E. vt dependence
fitting points is 3016 (X 13X 116), and the same set of fit- Ideally, to establish the probabilities of various processes
ting points is used to determine sétsB, andC. An impor-  in the ion-atom collision, one would like to propagate the

tant point to have stable propagation of the wave function iglectronic wave function to=c. In reality, this is not pos-
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FIG. 6. Targetswave bound-state probabilities, calculated by ~ FIG. 7. Probability for ionization, calculated by E®), as a
Eq. (7), as a function obt. v is the projectile velocity andis the ~ function ofvt. v is the projectile velocity and is the time mea-
time measured from closest approach. The collision energy is 2§ured from the closest approach. The impact paramtér=i4.5,
keV (v=1) and the impact parameter is 1.5 a.u. All probabilities and the solid line is the result for a 25 keV+ 1) collision and the
have been multiplied by® except for the curve representing the dashed line is for the 50 keVo(=1.414). The dotted lines are
sum of all the bound-state probabilities. The curves are labeled bplaced at 5% in either direction of the final values.
their correspondingy values. The curve labeled “total” represents
the sum of the probabilities for all bound states of the tasyeave. ~ from the above-mentioned questions. In Fig. 7, we plot the
probability for ionization for a 25 and 50 keV collision at
sible. Accordingly, we demonstrate that our ending point ofimpact-parameteb=1.5 a.u. The dotted lines are drawn in
vt;=25.2 is sufficient to establish the bound-state and ion&t 5% on either side of the final value. The ionization prob-
ization probabilities, to within 5%, for collisions in the range @bility at 25 keV does not enter the claimed error range until
of 25—100 keV. vt=17 a.u., while the 50 keV ionization probability has al-
In Fig. 6, we show bound-state probabilities, arrived at’e€ady reached 95% of its final valuewtt=7 a.u. There is a
through Eq.(7), for thes wave on the target proton during a slight oscillation inP;,,, for the 25 keV calculation that un-
25 keV collision atb=1.5 a.u. The probabilities have been doubtedly stems from the oscillations seen in the fhigh-
multiplied by n® to allow all levels to be plotted on the same bound states in Fig. 6, but the curve remains within the pre-
graph and to demonstrate thedkcaling. The probabilities Scribed I|m|ts. We _dld not attempt to evaluate an ionization
for n=1 andn=2 have clearly stabilized byt=25.2, but ~ Cross section for impact energies less than 25 keV due to
highern’s have not. One may see a decrease in the amplitud@sufficient range irt.
of the oscillations of then=3 probability, but then=4 and
5 will not stabilize until much later. The oscillations at higher IV. DISCUSSION
n, however, do not affect our analysis very much since their
probabilities are so small. Note that there is hardly any h
dependence in the sum of alllevel probabilities. Looking
at the “final” values forn=3, 4, and 5, one sees that the

Having shown results for the ionization cross section and
aving described exactly how we arrive at our numbers, we
now discuss how well TCMSD, close-couplifg], and lat-

. o tice [9] approaches meet the challenges of the proton-
;/n_3 sgallng holds re_asonably well. The contribution to thehydrogen system at intermediate impact energies. Specifi-
ionization cross section from the extrapolated bound State%ally we talk about convergence in partial waves, radial
-4 9 i ' . X . .
n=6 ente_rs 5_“ the level of about 3—-4 %. The error in themomentum range, and radial momentum resolution. Theories
extgapolgtlon s rather large, not because. Qf preakdown_ n th(‘?onverged on these three criteria are completely converged
1/n” scaling, but because tire=5 probability is still oscil- calculations. The TCMSD method has a large advantage over

lating atvt=25.2. The amplitude of this oscillation is about oype methods on the last point — the momentum resolution.
a third of then=5 probability. Thus, the error in the ioniza-

tion cross section, coming from the bound-state extrapola- A Partial )
tiOﬂ, is 1—=1.5 %. . Partial wave-convergence

In Fig. 6 we have only shown a small subset of the bound For the TCMSD calculation, we have included partial
states involved in calculating the ionization cross section. Davaves up td =2. We do have, however, two strong pieces of
the other bound states® dependence affect the ionization evidence that this is sufficientl) For the calculations that
probability? What about overlap between bound states owe have performed, even the 2 harmonics receive a small
both centers? The easiest way to answer these questions isftaction of the total wave function(2) As stated before, the
show the probability for ionization as a functionwf. Since TCMSD method does not automatically preserve the wave-
the normalization of the calculations presented here is prefunction norm. If a portion of the wave function were lost to
served to 0.5%, any larger variations with must come the higher harmonics, this would show up as a deviation of
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the norm from unity. The lack of higher partial waves could ' ' ' ' ' I ' '
in fact be the reason why the norm is preserved to 0.5% anc
not better.

The lattice calculation has no real limitation here, since all
partial waves are implicitly contained in their three- L
dimensional Cartesian grid. For two-center close-coupling,2
the question of the necessary number of partial waves ha§
been an interesting issue for many years, see, for example%
Kuang and Lin[7,8]. One would like to have pseudostates ~ oos
representing the continuum on both target and projectile cen
ters, but this may lead to false oscillatory structure in the
resulting inelastic cross section,8]. The conclusion of
Refs.[7,8] was to put only pseudostates on one center and gc £~
to partial waves up to and includinig=5 on that center. 0 2 4 6 8 10
Toshima, however, showed in R¢g] thatl =5 is not even p@u)

;ufficient to achieve convergence of the ionization cross sec- FIG. 8. The amplitude of momentum space radial functions on
tion, _When pseudostates are pIacec_J on one center. Refereqﬁg projectile immediately after closest approathk- 0.2, where the
[5] d'd show that the convergence in partial Waves was Very.jision velocity isv=2 andt is time measured from the closest
rapid if pseudostates were included on both cenieric-  approach. The impact parameterbis-0.5 a.u. The solid line rep-
cordance with the TCMSD calculatiprand furthermore, the resents the-wave amplitude, the dashed line is the amplitude,
false oscillation problem disappears if pseudostate energigd the dotted line is the amplitude.po and p7r are the real
are dense enoudi31]. form of p-orbitals aligned, respectively, parallel and perpendicular
to the projectile velocty in the collision plane.

B. Momentum range

For all the individual runs of the TCMSD calculation, the any case, the current set of TCMSD parameters allows col-
lision energies up to 100 keV.

T 0
normalization is preserved to close to 0.5% except for one The lattice calculation must have these large momentum

case; for thep=2.0 collision at an impact-parametér components represented, since the ground-state orbital is

= 1 - 1 1 0 i . . .
0.5 the final wave-function norm comes in at 9.7'4 . Th'Srepresented numerically, which requires momentum compo-
loss of norm does not affect the total cross-section calcula-

) . . o . nents up to at least 10 a.u. Tipe=2 peak in the projectile
tion muc_h, since the_ pFObab"'tV of ionization Bt=0.5 is . radial momentum corresponds roughly to a pseudostate en-
over a third. So the dip in the norm causes the error to Sp'k%rgy of 2 a.u. in the projectile fram@om evaluatingp?/2)

to 8% for this one point, and we maintain the 5% error on they \0 o ° S o Ref[5] included pseudostates up to 4-5
total cross section. It is, however, important to understan P P

why this happens to know the limitations on the theory. a.u. in energy. Thus, it is no surprise that we have agreement

The reason for the loss of norm may be traced to thebit\geaerl] -I;r?\lélle close-coupling, and the lattice method at

necessity of representing high-momentum components oh
the projectile for collisions at high-impact velocity and low-
impact parameter. Figure 8 shows the projectil@o, and

p7 momentum radial functions at=0.2, just after the pro- At the lower end of the impact velocity range=1, TC-
jectile has reached closest approach. At this early a poinMSD, close-coupling, and the lattice method differ consider-
vt=0.2, along the projectile trajectory the contribution to theably in their reported ionization cross section. This variation
projectile component of the wave function comes mainlymay be traced to the differences in radial momentum resolu-
from the ground-state hydrogen target atom. Accordingly, theion. The TCMSD radial momentum resolution is 0.05 or
projectile radial functions display a broad maximum npar 0.07 a.u., depending on whether one is using basis set A or B.
=2 a.u., since the target wave function in momentum spac@ rough idea of the close-coupling momentum resolution
is separated from the projectile center by 2 a.u. Furthermoranay be arrived at by taking the square root of twice the
the broadness of the peak reflects the wide initial momenturpseudostate energy2E. Thus, for low-energy pseudostates
distribution of the target electron. The target atom also has ¢he calculation by Toshimfb] has a resolution of 0.11 a.u.
larger overlap with the projectilpo wave, explaining why  For the high end of the pseudostate spectrum, the resolution
our po radial momentum amplitude is larger than the is considerably worses=0.8 a.u. The momentum resolution
amplitude. A part of the peak gt=2 probably has a con- of the lattice calculation is actually determined by the size of
nection with the binary encounter mechanism, but the prothe Cartesian grid in configuration space, due to the inverse
jectile velocity is too slow to clearly separate out the binaryrelation between coordinate space and Fourier space. The
encounter component. The maximum radial momentum repealculation off 9] applies a masking function at the boundary
resented byB splines in the TCMSD calculation ip,ax  of a box going from—30-30 a.u. The action of the masking
=4, and the tail of the projectile momentum distribution is function on the configuration space wave function is the
not so small at this momentum far=2. This problem same as convolving the momentum space wave function
makes a two-center expansion difficult for high velocity. In with the Fourier transform of the masking function. Thus,

C. Momentum resolution
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! problem, since it is proportional to time. The 25 keV (
T @ =1.0) collision took more than three times the amount of

:3:0.5—— time to reach its final probability values than the 50 keV
g (v=1.414) collision. Hence, it is clear why the theories,
% 0 /\v which agree well at 50 keV, diverge from each other at 25
\/ keV. Of the three theories shown in Fig. 1, TCMSD is the
o5 . | . | . | . | . best equipped to deal with the radial phase oscillations be-
! § cause of its superior momentum resolution.
20 -
% ol i V. FUTURE OUTLOOK
% ol i
! i The immediate goal of this paper is to provide accurate

total ionization cross sections for the proton-hydrogen sys-
00—t tem at intermediate impact energy. But an equally, if not
more, important goal is to show the way to better models of
ion-impact ionization. The lattice calculation is enormous,
FIG. 9. The target momentum space radial function for she employing 27 000 000 (300300x 300) grid points. Direct
wave of the 25 keV collision at impact paramebe+ 1.5 and at a  generalization of this method to more complicated systems
time t=10.2 a.u. after closest approadh) The solid line repre- such as ion-impact ionization of molecules is out of the ques-
sents the real part of the target radiatave after projecting out the tion. The two-center momentum space discretization and
1s bound state. The ripples in the total radial function result from ac|ose_coup|ing methods are more compact calculations with
exp(~ip’/2) phase in the continuum interfering with the bound pasis sizes of 500 to 1000 elements, but still these calcula-
part, which is mainly just thedstate.(b) The solid line is the phase tjons are large. From the discussion of the radial phase
derived from the real and imaginary part of the radiaave after  gpoye it is clear that one can do better. Already, one can see
having projected out the slbound state. The dotted line is the 4 the wave-function representation in TCMSD is lopsided.
argument of the expansion phasept/2 att=10.2 a.u.. Only 12 harmonics are necessary, six on each center, to
cover the wave function. On the other hand, as much as 80
their momentum resolution is72/60 or 0.1 atomic unit, since radial B 5p|ines were necessary to describe the radial mo-

any finer detail would be washed out by convolution. Thementum behavior. We have just showed that free expansion
TCMSD calculation has a factor of two better momentumof the ejected electron component of the wave function is
resolution than any other previous theory applied to protonresponsible for ripples in the radial momentum. Thus, the
hydrogen collisions. next step for future theory should be to take care of this
Why is momentum resolution important at low-impact ve- expansion phase analytically allowing a reduction in the
locity? The start of the response to this question is seen iRumber of basis functions and propagation of the wave func-
Fig. 7. The slower collision takes longer to stabilize than theijon to much larger times.
higher-velocity collision; one must represent the electronic  There already has been some theoretical work addressing
wave function to at leasit=17 (t=17) a.u. in the 25 keV  the analytical treatment of the ejected electron expansion. In
case whilewt=7 (t=>5) is sufficient for 50 keV collision. A" 1985 Solov’ev and Vinitsky33] proposed solving ion-atom
scaling law for the dependence of ionization on internucleagollision in coordinates where the internuclear separation is
separation[22], predicts that the internuclear separation atscaled to unity. Such a scaling confines the ejected electron
which ionization stabilizes is proportional #; thus, one  cloud and introduces a phase factor éxi{(R) which is the
expects that the 25 keV collision needs to be propagategonfiguration space analog of the momentum space phase
twice as far invt as the 50 keV cas@r 242 longer in time.  factor, exp(-ip?/2) discussed above. A two-state model
During the longer stabilizing time, the wave function for the pased on the Solovev scaling has been developed for
25 keV collision becomes more complicated. Figui@9 proton-hydrogen collisiong34], but it has not provided total
shows the real part of the momentum radial function for thecross-section values. lllescas and RiE38] have proposed
targets wave atvt=10.2 a.u. after the 4 bound state has to apply the expansion phase factor éxp{R) as a general-
been projected out. Thus, this radial function representized translation factor without scaling the coordinate space
mostly continuum levels. Note that the radial function dis-of the ion-atom collision. Recently, Sidky and E$B6] have
plays quite a few oscillations. The cause for these oscillaproposed two solutions to the general problem of describing
tions was identified in Ref$20,32. The ejected component ionization in any atomic procesgt) writing a general scaled
of the wave function exhibits, to first order, a free expansionime-dependent Schadinger equation akin to the Solov’ev
in configuration space. This means that the ejected electrogcaling but avoiding its inherent singulariti€g) solution of
component of the momentum space wave function evolves ithe time-dependent wave equation with a combination of sta-
time similar to expip?t/2). Extracting the corresponding tionary Gaussians and Gaussian wave packets. Reference
phase, one can see that it matches well vattv2 in Fig.  [36] solved a one-dimensional model problem demonstrating
9(b) for t=10.2 a.u[The second part of the set B knot point their methods. As of yet, there has been no attempt to solve
grid was designed to deal with this phase better, see Edghe full proton-hydrogen system taking into account analyti-
(10)]. As time increases, this phase factor creates more of eally the basic motion of ejected electron component, but the

(3

p(au)
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results presented in this article clearly show that accountindor the maximum ionization cross section is 22% higher than
of the expansion is a necessary step toward an improvetthe experimental value, which considering the error bars
theory of ion impact ionization. claimed on both numbers, constitutes a disagreement.

In summary, we have provided total cross-section calcu-
lations for proton impact ionization of hydrogen at an energy
range where this process is the most important, 25-100 keV ACKNOWLEDGMENTS
(1-2 a.u. of velocity. The results are in accord with other
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